eagle-i Harvard UniversityHarvard University

Core Laboratories at Harvard University

This is a summary list of all core laboratories at Harvard University . The list includes links to more detailed information, which may also be found using the eagle-i search app.

Advanced Fetal Care Center (BCH)


The mission of the Advanced Fetal Care Center (AFCC) is to provide the finest diagnosis and care for a mother carrying a baby with a congenital anomaly. For these families, our center offers entry to a continuum of care and support that extends throughout childhood--from prenatal diagnosis and counseling, through treatment and long-term follow-up. On rare occasions, our team will recommend and perform intervention during fetal life. Our physicians, who represent all pediatric subspecialty areas, work with a wide range of babies with anomalies. Together, they have developed ground-breaking procedures in fetal medicine and surgery.

Advanced Microscopy Core (JDC)


The Advanced Microscopy Core of Joslin ‘s Diabetes Research Center facilitates the ready availability of sophisticated morphological techniques by providing electron microscopic services, a confocal microscope facility, a laser capture microdissection facility, as well as preparation of frozen or paraffin sections from tissues provided by investigators Additionally we provide protocols, analysis and interpretation.

Since the core is subsidized by the NIH funded DRC, members of the Joslin DRC have priority and a discounted fee-for-service. Use by outsiders will be considered if there is time available, with NIH grant holders given preference.

Animal Physiology Core (JDC)


The Joslin Animal Physiology Core provides technically advanced physiological evaluation of rodents. The core has non-invasive devices for the study of metabolism under conditions of exercise, diabetes, obesity, and unique diets. In addition, the core has 2D and 3D in vivo optical imaging for the measurement of fluorescence, bioluminescence and microCT. The facility at Joslin enables external users to access the core via an associated quarantine room for the importation of mice. Core personnel offer their expertise in designing and executing a variety of physiological assessments. For any inquiries about Core services, please contact Core personnel.

Animal Resources Facility (DFCI)


The facility provides services and resources for investigators looking to accomplish animal research objectives. This includes housing mice and rats, purchasing animals, training researchers regarding proper animal care and use, and monitoring the safety of all personnel with laboratory animal contact in conjunction with Dana-Farber’s Environmental Health and Safety and Occupational Health Services.

Dana-Farber has established an Institutional Care and Use Committee (IACUC) to oversee the Institute’s animal program, facilities, and projects involving the use of animals. The IACUC serves as the approval body for all protocols involving animal research, and assists faculty, students and staff in upholding Dana-Farber’s commitment to providing the finest care and most humane utilization of laboratory animals.

In addition to basic husbandry services, the ARF staff provides technical and veterinary services, mouse breeding management and mouse irradiation.

Arnold Arboretum of Harvard University: Weld Hill Growth Facilities


The Weld Hill Growth Facilities consist of 12 individually controlled greenhouses and several types of Conviron growth chambers for precise control of growing conditions.

Arnold Arboretum of Harvard University: Weld Hill Microscopy Lab


Microscopists at Weld Hill will find a range of tools from the simple hand lens to the confocal microscope for 3-D reconstructions.

Arnold Arboretum of Harvard University: Weld Hill Molecular Lab


The molecular lab at Weld Hill is well equipped for modern molecular studies, from RNA expression studies to phylogenetic analyses.

Assay Development and Screening Facility (ADSF) at Boston Children’s Hospital


The Assay Development and Screening Facility (ADSF) provides consultation and implementation of high-throughput and high-content screening assays on a fee-for-service model. The core has specialized equipment to support image-based and live cell assay development. The ADSF also partners with the Human Neuron Differentiation Service to create and conduct phenotypic screening using patient derived iPSC lines differentiated into specific neuronal cell types to model human CNS disorders.

BADERC Metabolic Physiology Core (HMS)


Our Core is designed to teach and/or perform for users the following assays.

If you would like the core to perform these assays for you, contact Dr Peroni.

Consultation and assistance on writing animal protocols regarding services offered by the Core

BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center


The BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center provides all of the tools of modern functional genomics and proteomics combined with in depth bioinformatics, statistics, machine learning, and systems biology analysis, for academic and corporate clients alike. The Center has a particular emphasis on precision medicine and biomarker discovery. Equipped with State-of-the-Art technologies for high throughput proteomics, transcriptional profiling, genotyping, multiplex immunoassay protein validation, and real-time PCR and various systems biology tools. The Center provides all investigators access to comprehensive interdisciplinary, translational, and clinically-oriented facilities for high-sensitivity, high-resolution, and high-throughput multi-omics services. The Center allows investigators to use the most cost-effective, state-of-the-art proteomics and genomics strategies for extracting the most relevant information for each project. It provides assistance in study design, experimental execution, data analysis, and systems biology, while also serving as a forum for education, scientific interactions, and cross-fertilization in proteomics and genomics.
The BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center is also the proteomics core facility for the Dana-Farber/Harvard Cancer Center.

New Services:

• SOMAscan (SomaLogic) is a high multiplex, high sensitivity aptamer-based immune-like protein and biomarker discovery platform that simultaneously quantifies 1,305 human proteins in all types of protein extracts from bodily fluids such as serum, plasma, urine, saliva, CSF, cyst fluid, and tissue, cells, lavage, animal models and exosomes.
• Integrated systems biology analysis of transcriptome, miRNA, epigenome, metabolomics and proteomics data
• In-house developed workflows and algorithms for analysis of proteomics data
• Machine learning and AI approaches for predictor model development

BIDMC Metabolic Core


The core offers Comprehensive Laboratory Animal Monitoring System (CLAMS) studies to noninvasively measure a variety of calorimetric and metabolic data in mice. The calorimetric data recorded by the system includes oxygen consumption and carbon dioxide production values, from which both heat values and respiratory exchange ratios (RER) can be calculated.

BWH Biostatistics Center


Biostatistics support is available to investigators in the Brigham and Women's and Harvard Medical research community for statistical consulting on issues such as study design and data analysis for manuscripts and grant applications. Resources are limited, so planning ahead is essential. The Biostatistics Consulting Service is part of the Biostatistics Core of the BWH Center for Clinical Investigation (CCI).

BWH Medicinal Chemistry Core


The mission of the BWH Medicinal Chemistry Core is to serve the Partners HealthCare and non-Partners research communities providing expertise and knowhow to help investigators engage Medicinal Chemistry in their basic or translational studies in an efficient and cost-effective manner.

BWH Research Imaging Core


The BWH Research Imaging Core (BRIC) provides a comprehensive research imaging service to meet the needs of investigators and research subjects using imaging facilities at Brigham and Women’s Hospital (BWH). The BRIC has been developed in close collaboration with the Brigham CTSA Imaging Team of the Harvard Catalyst Translational Imaging Program. A unique feature of BRIC is the complete anonymity of research subjects. Research image scheduling, image acquisition and image storage are all kept completely separate from BWH clinical Radiology systems. The BRIC provides the administrative infrastructure, customer service architecture and institutional support to promote investigative applications of imaging technologies.

BWH Specimen Bank


"The Specimen Bank provides materials to investigators with IRB-approved protocols. Staff are available to assist with selection of samples appropriate for downstream applications, development of processing protocols or preparation of derivatives from clinical materials.

IT Staff are also available to assist researchers with creation of queries for prospective sample collection or queries to select samples from specific cohorts.

Our goal is to drive quality research in an efficient and cost-effective manner. Each year we provide tens of thousands of samples to area researchers."

Getting started: Partners investigators and study staff may request a Crimson user account to help manage studies and collected materials.

BWH-BRI Antibody Core Facility


The BWH-BRI Antibody Core Facility provides high quality, purified monoclonal antibodies to the BWH research community. Because the antibodies are made in-house and require no shipping, they are available at a cost substantially lower than that of commercial vendors. Antibodies are of standardized quality and are available in two convenient aliquots: 500ugs and 10mgs. The Core maintains an inventory of commonly used antibodies, which allows orders to be filled quickly.

BWH/Harvard Cohorts Biorepository


Biorepository responsible for collection, storage and distribution of specimens from longitudinal cohorts at the Channing Division of Network Medicine.

Bauer Core Laboratory (FAS)


Our goal is to advance research efforts in the life sciences that cannot readily be accomplished in the traditional academic laboratory because of a need for expensive instrumentation or automation, scientific or organizational infrastructure, or multidisciplinary expertise.

To promote cutting-edge research and to foster scientific collaborations, we make our extensive laboratory and computational resources available to scientists at Harvard. Our technical staff provide expertise and hands-on training in protocols and the use of instrumentation for a nominal fee. Researchers can sign up to use the instrumentation through an on-line scheduling system and conduct their experiments independently.

Berenson-Allen Center for Noninvasive Brain Stimulation (BIDMC)


The Laboratory for Magnetic Brain Stimulation provides a cutting edge methodology for assessing the function of the cerebral cortex and motor systems. The method of repetitive cortical magnetic stimulation was pioneered by Dr. Pascual-Leone, the Director of the Laboratory, and is currently finding uses in a variety of clinical situations, ranging from depression and movement disorders to neurorehabilitation.

Clinical work includes studies of central motor conduction time, cortical excitability, noninvasive determination of hemispheric dominance for language, and noninvasive cortical mapping. In addition, our clinical program offers noninvasive brain stimulation for treatment of neuropsychiatric disorders such as depression and schizophrenia, epilepsy, dystonia, Parkinson's disease, chronic pain, and the neurorehabilitation of hand function and language after stroke.

Bioanalytical Chemistry and Pharmacokinetic Resources


The Cancer Pharmacology Core provides DF/HCC investigators with the necessary expertise and resources to design and undertake pharmacokinetic studies in the context of phase I and phase II clinical trials, and preclinical investigations. The core has the ability to implement and validate previously developed analytical methods to quantify drugs and their metabolites in biological fluids as well as the capability to modify or develop entirely new assays when warranted. The core also offers comprehensive analysis of pharmacokinetic data as an additional service, including the estimation of pharmacokinetic parameters and identifying their relationship to pathophysiological variables and pharmacodynamic effects.

Bioinformatics & Systems Biology Core (BIDMC)


The mission of Bioinformatics and Systems Biology core is to provide expertise and infrastructure in designing, analyses and simulation of high-throughput OMICS data to answer underlying biological questions. The core supports analysis of data from many next-generation sequencing assays, including transcriptional quantification (RNA-Seq), protein-nucleic acid interactions (ChIP-Seq), global methylation, genotyping or variant analysis through genome sequencing. To support cutting edge research, a special emphasis was made on implementing/developing systems biology frameworks and models for integrative analysis of genomic, epigenomics proteomic, metabolomic, imaging and clinical data to identify key molecules driving pathophysiology. The core has unique service to predict the Antigenic regions (T-epitope, B –epitopes) from the gene and protein sequences to predict potential subunit vaccine candidates.

Bioinformatics and Biostatistics Core


The Bioinformatics and Biostatistics Core at Joslin Diabetes Center offers a broad range of services supporting basic, clinical, and translational research for those at Joslin and elsewhere. We cumulatively have over 15 years of experience supporting science with biostatistics and bioinformatics analysis. Initial consultations are provided at no charge through support of the Joslin Core or Harvard Catalyst.

Our bioinformatics and biostatistics services cost $100/hour for Joslin investigators and $135/hour for all others. Our average turn-around time is one week.

Biological Analysis Service Facility (HSPH)


The Biological Analysis Service facility provides and/or facilitate access to digital imaging and biological analysis services in and out of Harvard campus. We aim to foster new research opportunity for HSPH investigator through providing initial support for pilot studies. Check out Bioanalysis "Mini-Pilot Funding" for description of the funding mechanism and an application form to request funds.

Inside HSPH:
* Biomedical Imaging
* Flow Cytometry
* Electron Microscopy
* Proteomics Facility
* Molecular Analysis Facility

Biomedical Research Informatics Core Laboratory (BIDMC)


"The mission of the Biomedical Research Informatics Core (BRIC) is to utilize the expertise of BIDMC 'informaticians' with backgrounds in medicine, biology, engineering, biostatistics, and computer science to facilitate research at our institution by (a) providing a high level of service and experience in informatics that is difficult for individual laboratories to achieve and maintain, (b) developing the infrastructure required to address common informatics needs of all researchers, and (c) identifying areas in which there can be closer collaboration among life scientists and quantitative scientists."

View our portfolio for examples of BRIC projects. To arrange for a free consultation, please contact Griffin Weber. If you choose to use BRIC services, hourly fees vary depending on the types of services needed. You will be given an estimate of the number of hours before any work begins.

Biopolymers Facility (Genetics) (HMS)


Our mission is to provide investigators with access to technologies and services that will help them speed along their research programs while conserving both time and money by not having to conduct certain experiments within their own labs. We strive to provide high quality data and a rapid turn-around time for all samples. In addition, we provide a wide variety of the most popular reagents and supplies for immediate pick up from our facility.

Biospecimen Repository Core (DFCI)


The Biospecimen Repository provides long-term storage of clinical and research material in -80° C and liquid nitrogen freezers located at Dana Farber's Harbor Campus. Transportation of samples to and from Harbor Campus is provided by the facility for a small fee. Competitive prices are available on per box or per freezer basis in both segregated or non-segregated environments.

Biostatistical Design and Analysis Core (BWH)


The BDAC provides collaborative support in the design, execution and analysis of clinical trials and epidemiology studies conducted at the Boston OAIC. Additionally, the BDAC provides mentoring and collaborative opportunities for students and junior faculty in quantitative aspects of the study of physical function and impairments in aging. The BDAC is equipped to provide critical services on a consulting basis (e.g. in an advisory capacity in critical review of study data collection procedures) and more formally (e.g. in conducting simulation studies and power calculation). Furthermore, the BDAC provides support for ongoing projects by providing critical review and expertise in evaluating study conduct, or more extensive, pre-specified contributions to trial objectives. Support services for study completion are also available in providing guidance and assistance in statistical analyses, as well as co-authorship of abstracts and manuscripts describing study results.

Biostatistics Core Facility (DF/HCC)


"The Biostatistics Core facility is a shared resource supporting consultation on biostatistics and epidemiology throughout the Dana-Farber/Harvard Cancer Center (DF/HCC). The mission of the core is to ensure that experimental designs, study monitoring and data analyses take advantage of robust, efficient methods that reflect 'best practices' in biostatistics and epidemiology; to support NIH-funded peer reviewed grants that do not contain salary support for statisticians; and to enable pilot and small scale studies to become part of successful applications for peer-reviewed funding."

These services are available to Dana-Farber / Harvard Cancer Center members only. The Biostatistics Core is located across several of the member institutions of the DF/HCC. To contact the Core, please email or call the statistician associated with your disease site.

Blais Proteomics Center (DFCI)


The Blais Proteomics Center develops and applies state-of-the-art proteomics, informatics, and related technologies for direct interrogation of protein expression, modification, and function in response to biological perturbation in cell-based models of human cancer and primary tissues. The Blais Proteomics Center serves as a valuable resource to support individual research labs at the Dana-Farber and throughout the surrounding research community. As a key component of Dana-Farber’s Strategic Plan for Research, Blais Proteomics actively participates with other Dana-Farber Strategic Research Centers in large-scale studies, designed to leverage disparate capabilities in pursuit of novel, in-depth, and otherwise unattainable insights into human biology and disease. Consistent with our role as a world-class, center of excellence in proteomics science, members of the Blais Proteomics center contribute to the teaching mission at Harvard Medical School and participate in outreach activities designed to introduce and train young scientists and others who may not otherwise have access to these advanced technologies.

Bone Density & Body Composition Research Core


To advance interdisciplinary health sciences research and innovation by providing high quality bone density and body composition measures to investigators at Brigham and Women’s Hospital (BWH), Partners HealthCare and the broader, medical and research community.

Executive Summary:
The BWH Bone Density and Body Composition Research Core uses the latest technology to provide high quality, reproducible measures of bone mineral density (BMD) and body composition by dual energy x-ray absorptiometry (DXA). Dr. Meryl S. LeBoff is the Director of the Bone Density and Body Composition Research Core and has extensive experience in assessing bone density and body composition. She is the Chief of the Calcium and Bone Section and Director of the Skeletal Health and Osteoporosis Center and Bone Density Unit in the Endocrinology, Diabetes and Hypertension Division at BWH. She is a trustee for the National Osteoporosis Foundation and served on the 2013 Expert Panel for the International Society for Clinical Densitometry’s (ISCD) Position Statement on Bone Density and Body Composition Measures. She and the staff at the Bone Density and Body Composition Research Core have been performing clinical research scans for more than 25 years and are committed to maintaining the highest standards of quality control.

We are conveniently located at 221 Longwood Avenue, which is accessible by the Partners Masco M2 and Ruggles buses, MBTA buses and the T. Valet parking is also available.

Boston Children's Hospital Viral Core


Viral Core’s goal is to provide scientists with access to cutting-edge viral vector technologies in an effective, high-quality and cost-efficient fashion. Viral Core also provides consultation to investigators in selecting, designing and using viral vectors.

Broad Institute Genomics Services


For over twenty years, we've been pushing the boundaries of genomics by producing high quality data in a scalable environment. Broad Institute Genomic Services represents a new model for collaboration, offering the global community unprecedented access to capabilities.

Inquiry Form: http://genomics.broadinstitute.org/tell-us-about-your-project

CCIB DNA Core: Automation and HT Library Screening (MGH)


The CCIB DNA Core, founded in 1995, is a well-established major research core laboratory within the Center for Computational and Integrative Biology of Massachusetts General Hospital Boston. The Facility provides a wide range of state-of-the-art services and specialized expertise in genomics, molecular biology, and laboratory automation to the greater Partners research community.

As the need for high-throughput research efforts is growing, the demand for laboratory automation solutions increases. To meet this demand, the Laboratory Automation unit has been designed as a flexible entity within the CCIB DNA Core to extend the benefits of laboratory automation to a diverse user group by providing standard and custom medium- to high-throughput sample processing services for various molecular biology and genomics applications. One of the many unique capabilities of the group is its proficiency in special automation process design and implementation.

CCIB DNA Core: Genotyping (MGH)


The CCIB DNA Core, founded in 1995, is a well-established major research core laboratory within the Center for Computational and Integrative Biology of Massachusetts General Hospital Boston. The Facility provides a wide range of state-of-the-art services and specialized expertise in genomics, molecular biology, and laboratory automation to the greater Partners research community.

The CCIB DNA Core has the expertise to perform specialized services for investigators who are considering genotyping, DNA profiling, and mutation detection techniques for their research. Our experienced team - staff members from both the Sequencing group and the Laboratory Automation group - are providing fast, reliable, and cost-effective solutions for genetic analysis applications such as DNA Fragment Analysis (Microsatellite, MLPA) and Mouse Genotyping.

CCIB DNA Core: Sequencing (MGH)


The CCIB DNA Core, founded in 1995, is a well-established major research core laboratory within the Center for Computational and Integrative Biology of Massachusetts General Hospital Boston. The Facility provides a wide range of state-of-the-art services and specialized expertise in genomics, molecular biology, and laboratory automation to the greater Partners research community.

The DNA Sequencing division of the CCIB DNA Core functions both as a small-scale sequencing facility and a high-throughput center for large-scale sequencing projects. It offers solid experience in conventional Sanger DNA sequencing and DNA Fragment Analysis (Microsatellite/MLPA), and reliably provides high-quality services with rapid turnaround time and competitive pricing. In support of the ever-growing research community’s needs, the Sequencing group is now also offering cost-effective high-throughput approaches for specific Next-Generation Sequencing applications such as Complete Plasmid Sequencing and CRISPR Amplicon Sequencing.

CCIB DNA Core: Synthesis (MGH)


The CCIB DNA Core, founded in 1995, is a well-established major research core laboratory within the Center for Computational and Integrative Biology of Massachusetts General Hospital Boston. The Facility provides a wide range of state-of-the-art services and specialized expertise in genomics, molecular biology, and laboratory automation to the to the greater Partners research community.

The Oligonucleotide Synthesis division of the CCIB DNA Core provides investigators with custom oligonucleotides for use in a wide range of genetics applications including DNA sequencing, PCR, cDNA synthesis, hybridization, and in vitro mutagenesis. In continuous operation since 1996, our division is committed to supplying the greater Partners research community as well as non-Partners research organizations with high-quality products at low cost and with rapid turnaround time.

CHGR Chromosome Substitution Strain Resource (MGH)


This resource provides to MGH investigators a local source of breeding pairs of the 22 chromosome substitution strains (CSS)* of mice and access to basic phenotyping equipment for mapping of simple or complex traits, to promote the use of genetic mouse-based strategies in basic and clinical research.

The CSS Resource comprises 22 mouse lines, each homozygous for a single A/J chromosome (Chr 1-19, X or Y and mitochondria) on a genetic background that is otherwise C57BL/J that were generated by Dr. Joseph Nadeau (Case Western Reserve University) and his colleagues. The CSS mice are available from The Jackson Laboratories. However, to save time and money, the MGH CSS Resource maintains CSS breeding colonies that are housed in the Simches-8 barrier facility, adjacent to a procedure room that will have equipment for basic standardized phenotyping, including behavioral and metabolic measurements.

CHGR Clinical Genetic Research Facility (MGH)


The Clinical Genetic Research Facility (CGRF) offers clinical investigators a convenient, modern research-dedicated facility for outpatient studies involving genetics. Our outpatient exam rooms and phlebotomy rooms are fully equipped and offer investigators an experienced medical assistant to facilitate the visit.

Since the CGRF’s primary mission is to support and promote genetic clinical research, the facility’s investigators performing genetic studies supported by non-commercial sponsors are given priority. The CGRF also considers genetic studies sponsored by industry, as well as studies without a genetic component, on a space-available basis.

CHGR DNA and Tissue Culture Resource (MGH)


This facility provides processing of cell lines, human blood and tissue samples for DNA, plasma and buffy coat storage and for initiation of lymphoblast and fibroblast cell lines in furtherance of the CHGR mission to promote the use of genetic strategies in basic and clinical research.

CHGR Genotyping Resource (MGH)


This resource provides custom genotyping (microsatellite, SNP, other) in human and mouse, mutation detection/DNA sequencing, dosage analysis and related services to further the CHGR mission of promoting the use of genetic strategies in basic and clinical research.

CNS Imaging and Analysis Facility


Center for Nanoscale Systems facility dealing with "SEM, TEM, ESEM, sample prep etc."

CNS Nanofabrication Facility


The Center for Nanoscale Systems' Nanofabrication Facility (CNS-NF), offers resource and staff support for fabricating and characterizing nanoscale devices and structures.

The facility currently operates the 10,000 sq.ft. LISE Cleanroom with leading-edge equipment capable of electron-beam and optical lithography, physical and chemical vapor deposition, dry and wet processing, metrology, and device characterization.

CNS Nanomaterial Facility


Center for Nanoscale Systems facility dealing with "FIB, XPS, AFM, Optical Microscopy and Spectroscopy, Biomaterials, Soft Lithography, Microfluidics, Nano Particles, Chemical Nanotechnology, etc."

CPCT Genomics Core (DF/HCC)


The Center for Personalized Cancer Therapy (CPCT) Genomics Core was established in 2015 to enable UMass Boston investigators and academic and industry collaborators to carry out basic and translational genomics research. The Core leverages cutting-edge technologies and next-generation sequencing capabilities for research and clinical applications. We help investigators and clinicians analyze samples, identify genetic variants contributing to disease risk, and reveal complex mechanisms involved in human disease.

The Core offers cost-effective massively parallel sequencing with the Illumina HiSeq 2500 (v4, 1TB enabled) and Illumina MiSeq platforms, and next-generation sequencing library preparation from RNA and DNA and nucleic acid quality assessments. Our Nanostring nCounter Analysis System allows highly sensitive, multiplexed gene expression analysis.

The CPCT is a collaborative venture between the University of Massachusetts Boston and the Dana-Farber/Harvard Cancer Center (DF/HCC).

CVVR Flow Cytometry Core (BIDMC)


Cytometry and cell sorting core at the Center for Virology and Vaccine Research. The facility has a BD FACSAria II housed in a sterile biosafety cabinet in a BSL2+ facility, allowing sorting of unfixed, live cells into a variety of tubes and plates. Equipment, consultation, dedicated operator, and data analysis available to outside researchers.

To schedule an appointment please contact one of our flow core personnel.

Cardiac Physiology Core Laboratory (BIDMC)


The goal of Cardiac Physiology Core is to provide expertise in evaluation of cardiac pathology for non-cardiovascular and cardiovascular researchers who are not equipped for such analysis." The core provides "non-invasive and invasive evaluation of cardiac physiology that may be difficult or time-consuming for those investigators without proper expertise, experience and equipments.

Cell Manipulation Core Facility (DF/HCC)


The (Connell and O'Reilly Families) Cell Manipulation Core Facility (CMCF), at Dana-Farber Cancer Institute (DFCI) was created in 1996 to be a manufacturing facility for production of safe and effective novel cellular component therapies, that meet regulatory guidelines for clinical use and enable cellular therapies to be translated from the bench to bedside. The goal of this facility is to assist DF/HCC investigators and sponsors in developing new cell-based therapies for cancer, gene therapy products for genetic diseases, and adoptive immunotherapy products. Many of these cellular products are manufactured in the context of clinical research studies designed to evaluate the toxicity and efficacy of novel treatments.

The CMCF facility, located in the Jimmy fund building, is dedicated to the production of clinical-grade cellular therapy products for patients who participate in clinical trials conducted by DF/HCC investigators. All procedures are performed in environmentally-controlled conditions according to current Good Manufacturing Practices (cGMP) established for cell and tissue processing. The third floor accommodates all of the production clean room areas while space on the ground floor is devoted to the storage of cellular products, tissues, and blood and tumor samples in liquid nitrogen and mechanical freezers. In addition, the Pasquarello Tissue Repository, located on the 6th floor, collects and stores patient samples solely for research use.

The CMCF is available to both clinical and laboratory investigators at all DF/HCC institutions and will provide services to patients at all DF/HCC affiliated hospitals. The staff of the CMCF are committed to working with DF/HCC investigators at all levels of clinical trial development and execution. In addition to manufacture of clinical grade cellular therapy products, CMCF services include pre-clinical development of manufacturing procedures, facilitation of DF/HCC and FDA review, data management, in-process and release testing of products, quality control monitoring, coordination of internal and external audits, and generation of reports for publication. The CMCF has been accredited by the Foundation for the Accreditation of Cellular Therapy (FACT), and is licensed by CLIA to perform high-complexity testing. The CMCF supports the Cancer Vaccine Center at DFCI, the Center for Human Cell Therapy at Boston Children’s Hospital and is also a member of the Joint Program in Transfusion Medicine.

Leadership and Staff

Director: Jerome Ritz, MD

Assistant Medical Director / Clinical Instructor: Sarah Nikiforow MD, PhD
Senior Administrative Director: Olive Sturtevant, BA, MT (ASCP) , SBB, SLS, MHP
Technical Director - Stem Cell Therapies Lab: Darlys Schott, BS, MT (ASCP), SBB
Technical Director - Novel Cellular Therapies Lab: Kit Shaw, PhD
Associate Director Quality Assurance: Mary Ann Kelley, BS, MT (ASCP)
Associate Business Director: Elaine Zive BS, MBA
Systems Manager: Philip Brzezinski, BS, MBA
Systems Manager: Josh Geary, BA
Manager, Novel Cellular Therapies Lab: Heather Daley, BS
Manager, Stem Cell Therapies Lab: Karl Stasko, BS, MPH
Manager, Quality Control Lab: Open Position
Manager, Pasquarello Tissue Lab: Doreen Hearsey, BS
Program Administrator: Gerry MacDonald

Certificates/Registration of Accreditation

The Joint Commission Accreditation Letter
FDA Registration
FACT Accreditation Certificate
CMS & CLIA Accreditation Certificate

Cell Sorter Core (BCH)


The Stem Cell Core Facility has been part of the IDDRC center for more than 30 years fostering collaboration and innovation among IDDRC investigators and members of the academic research community. It was used to develop chromosome sorting for human chromosome specific recombinant libraries and these techniques were utilized by others to generate large scale libraries for the early genome project. The facility was the first to develop cell sorting of fetal cells in the maternal circulation as a means to detect fetal genetic abnormalities.

Throughout its history the Stem Cell Core has provided careful and accurate cell cycle analysis via DNA content analysis using Hoechst dye uptake. This service is still used today by investigators. The facility was among the first to take advantage of the ability to express GFP in cells transfected with vectors and induced to express GFP in transgenic animals conditionally expressing a specific gene promoter. This ability allowed IDDRC investigators to isolate neurons, muscle cells and other cell types which express GFP from those which do not. IDDRC investigators were among the first to subsequently culture sorted neurons. Based on the extensive experience of the core using Hoechst dye for cell cycle analysis, the core was able to help IDDRC investigators prepare side population cells (tissue derived potential multipotent progenitor cells) based on Hoechst dye efflux. These methods have allowed the isolation of different muscle side population cells and have facilitated experiments that aim to use the cells for treating muscle disease. The interactive and collaborative nature of the core has fostered these developments, and the interests of the core director, advisory committee, manager and IDDRC investigators will continue to make this core as innovative in the future as it has been in the past.

The overall goal of the Stem Cell Core Facility is to provide both IDDRC and non-IDDRC researchers comprehensive analytical flow cytometry and cell sorting services in a timely, dependable and cost-effective manner.

Cell, Tissue and Organ Resource Core (MGH)


The mission of the Cell Resource Core (CRC) at Massachusetts General Hospital is to provide high quality primary hepatocytes and supporting tissues to researchers. We use an innovative, reliable and affordable process that meets Good Manufacturing Process (GMP) standards.

By utilizing a new perfusion technique that was developed at Mass General to preserve the viability of liver cells prior to transplantation, the CRC has been able to increase the viable yield of high quality hepatocytes from donor livers. As a nonprofit resource core, we can provide these cell cultures to researchers at affordable prices.

Cellular Imaging Core (BCH)


The Imaging Core provides access to standard digital and laser scanning confocal microscopy, multiphoton microscopy, unbiased stereology, and automated confocal microscopy for large scale genome-wide screens. In addition, the Core has substantial capabilities in quantitative and three-dimensional volumetric image reconstruction.

Center for Biomedical OCT Research and Translation (MGH)


The Center for Biomedical OCT Research and Translation (CBORT) is a National Biomedical Technology Resource Center (P41) funded by the National Institute of Biomedical Imaging and Bioengineering. Over the past two decades, Optical Coherence Tomography (OCT) has evolved into a powerful microscopy technique that can be used to safely image biological tissue. The mission of CBORT is to enable breakthroughs in biology and medicine through advancements in Optical Coherence Tomography (OCT) technology.

Center for Brain Science - Electron Microscopy Core Facility (FAS)


CBS houses a core facility with several scanning electron microscopes.

The SEMs are part of ongoing research to develop a three-dimensional electron microscopy facility, in order to image neural circuits with the highest possible resolution. Traditional methods of serial reconstruction of the brain, in which hundreds of electron micrographs from adjacent slices of a tissue are used to reconstruct the three-dimensional shape of an object, are burdensome. The central objective of the 3D electron microscopy facility is to overcome the technical barriers to serial electron microscopy so that this technique can become as routine as confocal microscopy. We are investigating several approaches to constructing a high-throughput device for generating thousands of serial electron micrographs. With such a tool in hand, investigation of any brain region would be able to include a three-dimensional analysis of the synaptic circuits at full resolution. We believe such a tool will be invaluable for a wide range of neuroscience (and other) questions.

Center for Brain Science - Imaging Core Facility (FAS)


CBS hosts an optical imaging facility that houses advanced devices for widespread use by neuroscientists and is developing the next generation of optical techniques. The optical imaging is intended to be an extension of individual labs, housed in shared space. By pooling equipment, highly skilled technical management of the tools is available, allowing for routine technological upgrades, quicker troubleshooting, and expert advice. In addition, the joint space leads to camaraderie amongst users, and allows new technical advances in one lab to spread rapidly to other labs. This core facility also frees up space in individual labs that can be used in other ways. Finally, the shared equipment lowers barriers to adoption of the latest technology.

This core facility provides:

* Laser scanning microscopes with motorized stages for high throughput reconstructions of the nervous system
* A histology suite for brain sectioning and tissue preparation
* Stereo fluorescence macroscopes
* The newest tools for high-resolution optical microscopy
* Ultra-fast optical scanning microscopes

Center for Brain Science - Neuroengineering Core Facility (FAS)


Technological advances hold a key to greater understanding of the structure and function of complex neural circuits. Neuroengineering is a core facility that provides customized engineering solutions to neuroscience problems faced by our members. Assistance with experimental design, electronics, machining, and software development, are all services provided.

Center for Brain Science - Neuroimaging Core Facility (FAS)


The Neuroimaging facility has a 3-Tesla magnetic resonance imaging scanner for non-invasive human brain imaging. Our aim is to:

* Provide functional and anatomic magnetic resonance imaging (MRI) to scientists studying human cognition, brain development and aging, and individual differences
* Provide training for undergraduate and graduate students destined to become the next generation of neuroscientists
* Pioneer innovative ways of imaging the human brain and is a first adopter of new neuroimaging technology, tools and applications
* Develop and make available the data processing and visualization tools demanded by advancing neuroimaging technologies.

Center for Cancer Computational Biology (DFCI)


The Center for Cancer Computational Biology at Dana-Farber Cancer Institute provides broad-based support for the generation, analysis, and interpretation of genomic and other large-scale data in the context of basic, clinical and translational research.

Center for Cancer Genome Discovery (DFCI)


The mission of CCGD is to advance precision cancer medicine by developing new technologies for the analysis of cancer genomes and to provide access to these technologies to basic, translational, and clinical investigators. There are three main components:

Technology development: To develop new technologies for the analysis of cancer genomes
Collaborations: To provide access to these genomic technologies to basic, translational, and clinical investigators at DFCI and beyond
Translation: To translate technologies to the clinical setting

CCGD’s services are based on Next Generation Sequencing using the Illumina Hiseq3000, Hiseq2500, and Miseq. Our next-generation sequencing platforms allow for the detection of the full range of genomic alterations, including mutations, structural rearrangements, copy number, and expression changes.

Structure of the Center:

William Hahn, MD, PhD, CCGD Director, Associate Professor of Medicine, Harvard Medical School
Matthew Meyerson, MD, PhD, CCGD Director, Professor of Pathology, Harvard Medical School
Laura MacConaill, PhD, CCGD Scientific Director
Paul Van Hummelen, PhD, CCGD Associate Director

Center for Clinical Investigation (BWH)


The Center for Clinical Investigation (CCI) is the home for clinical research at Brigham and Women's Hospital. The CCI is committed to facilitating the work of clinical investigators at the Hospital and in the larger community.

Center for Crystallographic Studies (FAS)


The X-ray diffraction facility in Harvard University offers single crystal X-ray data collection, structure solution and refinement of small molecule structures.

Center for Macromolecular Interactions (HMS)


The Center for Macromolecular Interactions (CMI) is a biophysical instrumentation facility for the characterization of macromolecules and their interactions. The CMI mission is to enhance basic research in the HMS community by providing scientific consultation, training, and access to shared biophysical instruments. The facility currently includes instruments for Isothermal Titration Calorimetry (ITC), Surface Plasmon Resonance (SPR), Biolayer Interferometry (BLI), Differential Scanning Fluorimetry (DSF), Circular Dichroism (CD), Size-Exclusion Chromatography with Multi-Angle Light Scattering (SEC-MALS) and Dynamic Light Scattering (DLS), and MicroScale Thermophoresis (MST).

Center for Morphometric Analysis (MGH)


The Center for Morphometric Analysis (CMA) is dedicated to the development and application of morphometric methods to biomedical imaging data, primarily high-resolution MRI. Using automated and semi-automated software written in our lab, MRI brain images are segmented into anatomical regions of interest. From this, we study the volume, surface, thickness, shape, and location of these regions and combine this with other types of information (behavioral studies, functional-MRI scans, diffusion-MRI, etc.) to analyze both the structure and function of the human brain.

Circulating Tumor Cell Core (BWH)


The Circulating Tumor Cell Core Facility uses immunomagnetic technology developed by CellSearch to isolate rare tumor cells from whole blood. Isolated tumor cells can then be counted or used for downstream analysis such as molecular studies or flow cytometry.

Clinical Research Coordinator Core Laboratory (BIDMC)


Partially funded through Harvard Catalyst, the Clinical Research Coordinator Core is available to support and collaborate with investigators and their research teams in all phases of clinical research, providing services that include assisting with the organization, implementation and completion of clinical research studies.

Clinical Research Laboratory (DFCI)


The Clinical Research Laboratory (CRL) utilizes protocol-driven standard operating procedures for the processing of pharmacokinetics, pharmacodynamic, and biomarker samples. This includes the processing, storage, and tracking of all research specimens to ensure the successful completion of clinical trials associated with patient treatment. The CRL is dedicated to the highest standards of specimen handling to maintain the integrity of data procurement and analysis for clinical trials.

Computational Health Informatics Program (BCH)


The Boston Children's Hospital Computational Health Informatics Program (CHIP) is a multidisciplinary applied research and education program. Informatics has become a major theme and methodology for biomedical science, health care delivery, and public health. Biomedical informatics involves modeling and understanding the cognitive, information processing and communication tasks of biomedical science, medical practice, education and research. The field is inherently interdisciplinary, drawing on traditional biomedical disciplines, the science and technology of computing, data science, biostatistics, epidemiology, decision sciences, population health, omics, implementation science, and health care policy and management. Our faculty are trained in medicine, data scientice, computer science, mathematics and epidemiology.

Computational Radiology Laboratory (BCH)


The CRL was formed with the mission of improving our understanding of the structure and function of the brain and other organs of the human body, in order to improve our capacity to diagnose and treat disease. Members of the CRL achieve this by developing novel technologies and computational modeling strategies for understanding and interpreting radiological images.

Computed Tomography Core Imaging Facilities (BCH)


Computed Tomography (CT) at Boston Children's Hospital is dedicated to putting children of all ages at ease, as you'll see from the whimsical décor of our Fenway Park and beach-themed CT rooms in Boston and our skilled and child-centered staff at all locations. We are experts at keeping children comfortable and we encourage parents to be in the room during the scan. In addition, our powerful multidetector scanners minimize exam time, often eliminating the need to sedate your child.

Located at two locations: Boston and Waltham. Should be contacted about scanner technology, image acquisition, etc., but not for actual access to the facility.

Confocal Imaging Core (BIDMC)


The function of the Confocal Core is to provide services in confocal microscopy, light microscopy and immunostaining for cells and tissues including:

* Confocal microscopy
* Brightfield and fluorescence microscopy
* Immunoperoxidase and immunofluorescence staining

1. First time users schedule an initial meeting of the P.I., future users and core staff. During this meeting, the project and experimental details will be discussed. Core staff could suggest which microscopy modality works best for the project as well as consultation on strategies to accomplish the imaging task. Users have the option of choosing service work or independent use.

2. Schedule a service work session or a customized microscope training session with one of the core staff members.

Conventional Electron Microscopy Facility (HMS)


The Harvard Medical School EM Facility is a fee-for-service core facility open to all researchers. The Facility provides services and supervision in Transmission Electron Microscopy.

CyTOF Antibody Resource and Core


Our core specializes in conjugating purified antibodies to a 35-metal catalogue for CyTOF users. With over 429 unique markers (261 for human and 168 for mouse), any user can create their own panel from our inventory. We also have optimized protocols specific to CyTOF for cell surface, intracellular cytokine, transcription factor, and phospho-signaling stains. All protocols have upstream specific techniques optimized for single cell population preservation following cryopreservation and through the entirety of the staining procedure.

We are akin to flow cytometry, but we actually utilize mass cytometry (CyTOF).

CytoGenomics (BWH)


The CytoGenomics Core provides an invaluable technical resource to the investigators of the BWH, MGH, and affiliated institutions. Services are also available to external academic and commercial laboratories; these should contact us via our website for sample submission and pricing. Cytogenetic studies can provide insight into regions of the genome that are pathogenetic in various neoplasms leading to an understanding of the molecular pathways participating in the biology of cancer. It is appropriate to consider cytogenetics as a fundamental adjunct to a variety of investigations underway, including basic and clinical research. For example, a rather simple cytogenetic analysis of mouse ES cells to determine ploidy prior to injections into blastulas leads to a greater success rate in establishing founders for knock-out and knock-in experiments. The primary chromosomal assignment of a gene by a FISH experiment may lead to correlation of a disease with that gene. Other cytogenetic studies may be important in establishing a diagnosis for correlation with clinical outcome. The advent of molecular probes for FISH analysis has facilitated cytogenetic studies in the mouse, and other model organisms and this Core aggressively implements such technologies.

In addition to state-of-the-art analyses for human samples, the BWH CytoGenomics Core also performs routine mouse karyotyping and a variety of other molecular cytogenetic analyses, services not easily obtainable elsewhere.

DF/HCC Cancer Proteomics Center


The Core provides all of the tools of modern functional proteomics. Equipped with State-of-the-Art technologies for proteomics; protein profiling, protein identification, protein and peptide fractionation, and quantization. Personalized experimental design consultation, comprehensive individualized bioinformatics support.

The mission of the DF/HCC Cancer Proteomics Core is to develop a comprehensive and interdisciplinary proteomics core for High Sensitivity, High Resolution and High Throughput Proteomics with particular emphasis on in depth proteomic consultation, referral to the optimal proteomics facility and a strong focus on clinical sample analysis. The core will combine consultation, service and education into a comprehensive, translationally and clinically oriented proteomics core.

DF/HCC Collaborative Functional Genomics Core


We bring together area resources for functional genomics to create a centralized portal, and provide consultation and educational service. We help researchers navigate available resources for designing, performing, and analyzing functional genomics screens and related assays, and will identify the one or more groups, reagent collections, instruments, etc., available at our participating centers that will best serve your scientific goals.

DFCI Flow Cytometry Core Facility


The Dana Farber Flow Cytometry Core provides state-of-the-art flow cytometry instrumentation in two locations on the DFCI campus. The facilities are managed by a full staff of expert flow cytometry technicians who specialize in assisting researchers with their analysis and sorting needs.
Please visit our website at http://flowcytometry.dana-farber.org/ for more information.

DFCI Medical Arts Core WebLibrary


DFCI Medical Arts Core WebLibrary offers complete services for Publications, Presentations and Advertising as follows:
Custom/Computer Graphics illustrations, Design and Consulting full productions services, Photoshop training.
Posters Productions/Brochure Printing on best selection of paper, canvas material and Backlit poster films.
Lamination, LCD announcements creation and posting.
Research Related Photography
* iMAC and PC computers
* Posters printer
* LCD electronic announcements TV units
* Backlit Display units
* Laminator
* Scanner
* Digital camera

DFCI Monoclonal Antibody Core


The mission of the DFCI Monoclonal Antibody Core (MAC) is to provide immunological reagents (antibodies) to support research efforts of area investigators. We generate and produce novel monoclonal and polyclonal antibodies, recombinant proteins and transfected cells lines for use in basic research, drug discovery and clinical application, including diagnosis, surrogate markers for disease status, and response to therapy or drug toxicity.

Given the diverse research needs of the investigators at DFCI and the surrounding Harvard community, The MAC strives to support a wide range of antibody requests. A key component of the MAC is the ability to explore and develop new technologies that facilitate antibody generation. The MAC is set-up to provide all basic functions of antibody generation, screening, purification (milligram to gram amounts) and storing antibodies.

DNA Resource Core (DF/HCC)


The DNA Resource Core was started in the spring of 1999 to meet a growing need for DNA sequencing services at a cost that is affordable for academic labs. Our services now include DNA sequencing for large- and small-scale projects and a plasmid repository & distribution service. Our highest priorities are quality assurance, user support and timely request fulfillment.

Questions about the plasmid repository can also be directed to plasmidhelp@hms.harvard.edu. (Please Note: we have drop-off locations in the Longwood Medical Area and at the Harvard Biolabs. Call for pick-ups at MGH Charlestown or other locations.)

Diagnostic Radiology Core (BCH)


The Department of Pediatric Radiology provides a full range of imaging services for newborns, infants, children, teenagers, young adults and pregnant women at Boston Children's Hospital and our satellite clinics in Lexington, Peabody, Weymouth and Waltham. Our experienced radiology team carries out more than 200,000 imaging studies each year, using the latest equipment and techniques specially designed or adapted for use with children.

Drosophila RNAi Screening Center (HMS)


The DRSC facilitates genome-wide and related Drosophila cell-based and in vivo screening at our state-of-the-art facility. We prove reagents, protocols and consultation throughout the screening process, including help with production of custom RNAi libraries; assay development, optimization and automation; data acquisition; data analysis and integration; and planning of follow-up assays.

East Quad NMR Core Facility (HMS)


Formerly the NERCE NMR Resource. Nuclear magnetic resonance spectroscopy is a powerful tool for studying structural and conformational parameters of molecules. This tool is vital for the chemical analysis of both small molecules (like those discovered in small-molecule screens) and large molecules, such as carbohydrates and proteins found to have potential biologic importance.

Electron Microscopy Core (BIDMC)


The EM Core at BIDMC provides service, technical assistance, and instrumentation for electron microscopy techniques.

Because EM projects can be extensive and expensive, the EM Core Facility invites all researchers to meet with core staff before a project is started to discuss the scope of the project, how to procure and fix tissues, time line, budgetary concerns, and any other general issues which might arise.

1. Contact the EM core facility staff to schedule an initial meeting. During this meeting, the scientific objectives and experimental details of your project are discussed. Please bring relevant articles that explain the project and any techniques you may be trying to reproduce. Core staff will work with you to design the EM study and schedule work.

2. Users have the option to choose service work (a) or independent usage (b). Please note: The EM core does not offer independent use of core microtomy equipment so the sections must be cut by core staff or elsewhere.

Environmental Genomics Service Facility (HSPH)


The aims of the EGS are: to assist Center investigators in preparing genomic DNA from blood/buccal swabs collected in their human population studies. This activity involves assistance in the proper collection, extraction, concentration, quality testing and hand or robotic plating for candidate gene and even Genome-Wide studies of gene-environment interaction; to assist Center investigators in creating a genomic DNA biorepository for DNA for genotyping and for epigenetics studies; to assist investigators in obtaining efficient genotyping and epigenetic services either in-house or through partner organizations in the Harvard system; and to assist Center investigators in selection of SNP's, haplotypes, genotyping platforms and for environmental genetic and epigenetic studies of human populations.

Environmental Statistics and Bioinformatics Core (HSPH)


The Environmental Statistics and Bioinformatics Core provides intellectual guidance for quantitative aspects of the design and analysis of Center studies. Core faculty and staff have expertise in a full range of biostatistical methods, environmental risk assessment, Geographic Information System (GIS) and spatial statistics, as well as molecular biology, bioinformatics and statistical genetics. Core Faculty are mostly drawn from the Department of Biostatistics at HSPH, particularly the Program in Environmental Statistics, but also from the Environmental Health Department at HSPH.

In addition to providing support for study design and analysis, Core members undertake methodological research motivated by their collaborations with Center investigators. The Core runs a regular seminar series and often sponsors short-courses on specialized topics of interest to the community.

Epithelial Cell Biology Core (BCH)


Provides technologies and resources required for studies on polarized epithelial cells that line mucosal surfaces. We provide specialized epithelial cell culture and gene manipulation services, customized materials and instrumentation, expert know-how, and training to facilitate structural and functional studies on polarized epithelial cell culture systems or mucosal intestinal tissue in situ.

Exposure and Environmental Analysis Service (HSPH)


"The Exposure and Environmental Analyzes Service provides exposure assessment equipment, design of experimental apparatus, laboratory analyzes of environmental and biological samples, support for methods development and pilot data, as well as training for researchers and students. The service maintains facilities such as clean rooms and exposure chambers."

Specific services are provided by the four affiliated laboratories.

Flow Cytometry Core (BIDMC)


"Committed to meet all of the flow cytometry needs for the BIDMC and the external research community, the Flow Cytometry Core facility offers state of the art instrumentation for routine flow cytometry and cell sorting. It is continuously expanding with the newest software and machinery for both sort and analysis capabilities of up to 30 flourescent parameters. The Flow Cytometry Core facility is available to: answer technical questions; assist you in setting up flow cytometry experiments; assist you with acquiring, analyzing and interpreting your data; assist in data presentation and data storage; provide training on the four benchtop analyzers and on software."

To schedule an appointment for regular flow cytometry (user operated), log onto our online web calendar at: http://bidflow.calendarhost.com/

Flow Cytometry Core (JDC)


The Flow Cytometry Core Facility provides high speed cell sorting, multi-color fluorescence cell analysis and data interpretation to Joslin Investigators. The aim of this core facility is to provide a comprehensive service with high quality for scientific researchers. The staff at the facility works closely with investigators to develop new techniques to meet research needs. We welcome investigators interested in developing new modes of analysis.

The core is open to everyone. Different pricing for HSCI vs academic non-HSCI and non-academic institutions.

Flow Cytometry Core Facility (SERI)


The Flow Cytometry Facility is a core facility of Schepens Eye Research Institute that provides fluorescent-based cell analysis and sorting to Boston area biomedical researchers.

Flow Cytometry Core Laboratory (BWH)


This lab's mission is "to provide high standard cell sorting and analysis services to the research community at the Brigham and Women’s Hospital and the Longwood Medical area."

Flow Cytometry Facility (HMS)


The Immunology Division Flow Cytometry Facility provides flow cytometric analysis and cell sorting services to investigators in the Harvard Medical School, The Harvard Stem Cell Institute, and in the Harvard affiliated hospitals and institutions. The facility currently has an LSRII and a FACSCalibur self-run acquisition and analysis for staff trained researchers, and a FACSAria IIu and a MoFlo Astrios EQ for cell sorting (performed by an expert technician).

Flow Cytometry Facility (HSPH)


Flow cytometry access facility. All new users must be trained by the facility manager over two orientation sessions and be approved to use the equipment in the facility.

All users must obtain the financial approval from their PI and financial manager. Please submit a PO number or the Harvard billing code prior to the first use of the facility.

Flow and Imaging Cytometry Resource (PCMM)


The Flow and Imaging Cytometry Resource provides research flow and imaging cytometry services to all investigators in the PCIMM at Children's Hospital, Boston and Immune Disease Institute, HMS and the local scientific community on a case-by-case basis. With state of the art instrumentation, such as the standard configuration 3-lasers FACSAria located in BL2+-facility, 20-parameters 4-lasers FACSAria SORP and DIVA FACSVantage SE TurboSort™, the facility offers high speed cell sorting and complex analytical services, development of collaborative projects as well as consulting on design and development of new protocols and methods.

Forsyth Bioinformatics Core


The Forsyth Bioinformatics Core specializes in oral microbial genomics and microarray gene expression analyses through the integration of computer science with molecular biology and genetics. In addition to supporting funded bioinformatics projects, the Bioinformatics Core will also provide computational support to Forsyth and other CATALYST researchers for processing, analyzing, and interpreting biological data.

Forsyth Center for Clinical and Translational Research


The Forsyth Center for Clinical and Translational Research (CCTR) is a unique clinical facility with 6 fully-equipped dental units and associated laboratories that are specifically dedicated to conduct clinical research in oral and related systemic diseases. Clinical trials following FDA guidelines are performed at all levels, from early phase 1 trials to large, multicenter definitive clinical trials, with the goal of improving outcomes and the long-term health of patients. We routinely conduct studies in the oral environment, that include standard clinical measurement protocols for dental caries, dental calculus, gingivitis, periodontal diseases, intraoral local anesthetic evaluation, tooth restoration and tooth whitening evaluation. In addition, the clinic is equipped for obtaining and processing microbiological samples, gingival crevice fluid samples, blood and saliva samples for analysis of bacteria, inflammatory mediators, as well as for genomic and proteomic analyses.

Under the new leadership of Dr. Thomas Van Dyke, Vice President of Clinical Research at The Forsyth Institute, the Center proposes new goals/efforts in discovering new techniques, testing new ideas and searching for valuable biomarkers for preventing and treating periodontal diseases and associated systemic inflammatory conditions. The CCTR is actively involved with the design and conduct of clinical research under Good Clinical Practices for submission to regulatory agencies. It has a published international reputation in evaluating intraoral local drug delivery devices, oral diagnostic systems, local anesthesia, restorative materials, tooth whitening systems and the association of oral diseases with systemic conditions. Forsyth's Institutional Review Board is a member of the Harvard Catalyst Regulatory Group and meets on a monthly basis providing complete review of clinical protocols.

Forsyth Epidemiology and Biostatistics Core


The Epidemiology and Biostatistics Core offers consultation services for study design and data management relating to biometry, epidemiology, and clinical trials. Request a consultation via Harvard Catalyst https://catalyst.harvard.edu/services/biostatsconsult/

Forsyth Flow Cytometry Core Facility


The Flow Cytometry Core offers consulting and support services for the detection of up to 14 different fluorescent parameters simultaneously, RBC contaminated samples, and high-throughput analysis using 96 or 384-well plates. The cell sorter allows for collecting cells/particulates of interest, after-screening for positively-selected markers, downstream applications, and is capable of sorting 4 separate cell populations simultaneously.

Service Type Academic (per hour) Commercial (per hour)
Analysis $80 $100
Cell Sorting $130 $160
Consultation $60 $70

Forsyth Histology Core


The Histology Core offers consulting and support services for both soft tissue and precise hard tissue analysis. Services include: tissue processing, embedding, sectioning, staining, and guidance on protocols. The Histology Core can embed samples in standard molds or custom molds in paraffin, resin, or as frozen tissue for routine histology. The core can also perform special stains and immunohistological studies performed either by the investigator or core staff.

Forsyth Imaging Core


The Imaging Core maintains three light microscopes for internal and external use:

      1. The Zeiss Axio Observer inverted microscope with epi-fluorescence illumination by a Colibri.2 LED and equipped with a Hamamatsu Orca-Flash4 camera is great for live cell transmitted and reflected light imaging.

      2. The Zeiss LSM 780 confocal inverted microscope has 34 channel detectors for spectral imaging and linear unmixing capabilities for thick specimens and experiments with multiple fluorophores. Environmental control is also available for these 2 systems.

      3. The Zeiss LSM 880 confocal upright microscope has a multialkali detector capable of capturing 3 channels simultaneously, a 32-channel Airyscan detector for super-resolution, Fast Airyscan, environmental housing, and a 20x CLARITY objective for imaging cleared tissue specimens.

Associated support services include sample preparation assistance, imaging, and image analysis guidance on a variety of sample types.

External Rates:

Microscope Academic (per hour) Commercial (per hour)
Zeiss Axio Observer Widefield $60 $90
Zeiss LSM 780 Confocal $100 $150
CO2 Incubation Unit $15 $15
Zeiss LSM 880 Confocal $100 $150
Training/Assisted use Additional $150 Additional $150

Forsyth Mass Spectrometry Core


The Mass Spectrometry Core at the Forsyth Center for Salivary Diagnostics offers mass spectrometry analysis and strategic consulting in proteomics for internal and external researchers. The Core houses state-of-the-art instrumentation---three mass spectrometers and associated instruments--and brings together expertise in proteomics, peptide synthesis, and surface plasmon resonance.

Forsyth Micro Computed Tomography (μCT) Core


The Forsyth Micro Computed Tomography (μCT) Core offers micro 3D X-ray imaging of small samples in high resolution, and will provide images and quantitative analyses of internal structures of ex vivo samples without any destructive procedures. The Scanco μCT40 system allows for visualization, measurement, and quantification of the structure of mineralized specimens. Contrast reagents permit visualization of structures such as blood vessels. This system creates a three-dimensional model from a stack of two-dimensional X-ray images taken around a single axis of rotation. The high-resolution scanner can capture detail at a resolution of 6 to 32 microns. The non-destructive nature of this technology allows investigators to carry out complementary analyses (e.g. histology) of the same samples.

Service Type Academic (per hour) Commercial (per hour)
Assisted scanning $100 $150
Consultation $150 $150
Software analysis (Amira/Scanco) $20 $30

Forsyth Multiplex Core


Bead-based multiplex arrays are commonly used for the detection of various biomarkers and proteins. This technique uses microsphere beads, coated with monoclonal antibodies against specific proteins, to simultaneously measure multiple analyte concentrations within a single small volume sample in various sample types.

  • body fluids (serum, saliva, plasma, gingival crevicular fluid, wound fluid, cerebral spinal fluid, joint fluid, etc)

  • cell and tissue extracts

  • cell culture supernatants

  • target species including human, mouse, rat, non-human primate, canine, porcine, etc.

Luminex® and their partners have developed many applications using the XMAP® Technology platform, including, but not limited to, the following fields of life science research:

Cancer Markers Cardiovascular
Cell Signaling Cellular Metabolism
Immunology Inflammation
Gene Expression Profiling Genotyping
Endocrinology Isotyping
Matrix Metalloproteinases Metabolic Endocrinology
Neurobiology Transcription Factors

The Forsyth Multiplex Core, established in 2013, offers three main platforms:

  • Luminex® 200™


  • AYOXXA Lunaris™ Technology

All platforms operate 96-well plate based assays. FLEXMAP 3D™ and AYOXXA also offer 384-well plate capacity.
Plate capacity: up to 80 samples in singlet with up to 16 wells designated as standards for antigen-antibody based assays (for 96-well format).


  • Multiplex protein detection using antibody-based assays of up to 100 analytes or 500 analytes in a single microplate well using the Luminex® 200™ or FLEXMAP 3D™, respectively.

    • Using 5-50 µl of sample volume, pg/mL levels of hundreds of protein biomarkers are detectable.

  • Ability to custom coat beads with various mammalian and non-mammalian molecules such as nucleic acids, receptor-ligands, and siRNA. These require custom-plexing, assay development/optimization, and additional pricing.

  • Both Luminex systems use BioPlex Manager, from Bio-Rad, for acquisition and computation of data.

    • Allows easy transfer of the data to excel.

    • In addition to the raw and computed data on fluorescence intensity and concentrations, standard curves, %CV, internal control samples, plate-to-plate variation, and standard deviation are only a few of the data output measures.

Function Assessment Core (BWH)


The FAC represents a strategic interdisciplinary alliance between the Muscle Mechanics and Metabolomics Laboratory and the Laboratory of Exercise Physiology and Physical Performance at Brigham and Women’s Hospital, Harvard Medical School, and the Nutrition, Exercise Physiology and Sarcopenia Laboratory at the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University. The core provides standardized, state-of-the-art technologies to measure muscle performance, physical function, and disability in human and animal studies for OAIC’s pilot and exploratory projects and for several OAIC related projects funded through other sources.

The Laboratory of Exercise Physiology and Physical Function at BWH is a 1,000 square foot laboratory that includes private exam rooms, rest/changing room, and work stations for research staff. The Laboratory is staffed by two Master’s degree level Exercise Physiologists and a Research Assistant. A physician Medical Director provides general oversight. The laboratory has substantial experience in conducting and overseeing clinical trials in young adults as well as older persons with mobility limitations, fall history, and chronic diseases. The designated exercise space is equipped with state-of-the-art equipment are illustrated below.

Gene Transfer Vector Core (SERI)


Our primary goal is to provide high titer, high quality research grade viral vectors to the research community at Harvard, within Boston, and outside to support preclinical gene therapy studies and basic research gene transfer applications.

Genetically Modified NOD Mouse Core Facility (HMS)


The Genetically Modified NOD Mouse Core provides Center investigators, as well as researchers elsewhere, with access to transgenic and mutant lines derived from the NOD mouse model: some will be generated within the Core; others are established lines of proven experimental value that are maintained in the Core.

The Core will construct transgenic mice in strains that have a high susceptibility to diabetes (in particular in the NOD line). This includes trangenesis by conventional pronuclear injection or by delivery of RNAi cassettes on lentiviral vectors.

The Core will also provide a panel of existing transgenic and mutant lines. These lines are chosen because of their established interest in allowing the dissection of immunological tolerance in Type 1 Diabetes, and in response to Center investigator needs.

Genome Engineering and iPSC Center (GEiC)


The Genome Engineering and induced pluripotent stem cell Center (GEiC) supports researchers with up-to-date technologies to meet their cell and animal model needs. On the genome engineering front, we offer a variety of services tailored to best fit investigators individual preference, ranging from CRISPR reagents with or without validation, to cancer/iPS cell line modification or animal model creation. We work closely with mouse cores from design, reagent validation to genotyping, process improvement and troubleshooting, when necessary. We also provide next-generation sequencing (NGS) based human cell authentication and NGS-based genotyping services and general molecular biology assistance. On the iPSC front, we culture, bank and store primary fibroblasts and renal epithelial cells from patient samples for investigators, and iPSC reprogramming service is provided from fibroblasts, RECs as well as peripheral blood mononuclear cells (PBMCs). The GEiC aims at helping investigators convert their idea to a useful model quickly and cost-effectively.

Genome Modification Facility, Harvard University


The Genome Modification Facility (GMF) provides transgenic, gene targeting, and other services to investigators of Harvard University and its affiliated institutions, as well as to investigators within the US and abroad. The GMF performs microinjections of DNA into fertilized embryos to generate transgenic mice, DNA transfection into ES cells for the creation of recombinant ES cell clones, injection of gene-targeted ES cells into host blastocysts to generate gene knock-out or knock-in mice, teratoma formation studies, and other related ES cell-based services. Other services include cryopreservation of mouse sperm and embryos, in vitro fertilization (IVF), recovery of cryopreserved mouse sperm and embryos, rederivation of pathogen free mouse lines, and derivation ES cell lines from wild type and mutant mice with a variety of genetic backgrounds. Our staff provides general consultations on experimental designs and vectors for gene modification-related projects, DNA preparation, recombinant ES clones, mouse genotyping, colony breeding and husbandry. We can also customize services as requested to support development of animal models of human diseases.

Genotyping and Genetics for Population Sciences Core (DF/HCC)


The mission of the Genotyping and Genetics for Population Sciences Core is to provide services to investigators conducting molecular analyses of somatic DNA collected as part of a wide range of investigations. This Core provides high-throughput assays of specific gene mutations and polymorphisms (SNPs) in the many situations where previously defined specific nucleotide alterations are of interest.

Glycomics Core (BIDMC)


The Glycomics Core provides services, instrumentation and expertise in glycomics to BIDMC research groups, affiliated and non-affiliated academic institutions and corporates.

HDDC Microscopy and Histopathology Core B


Provides resources in immunofluorecence, electron microscopy, confocal, and deconvolution microscopy of living and fixed cells and tissues, and offers expertise in imaging polarized cells in monolayer culture

There are 3 locations for Core B:
* Immune Disease Institute (IDI)
* Children's Hospital Boston (CHB)
* Beth Israel Deaconess Medical Center (BIDMC)

HMS Microfluidics/Microfabrication Core Facility


The HMS Microfluidics Facility aims to make the tools of Microfabrication and Microfluidics available to all HMS users.

HMS Research Instrumentation Core Facility


The Research Instrumentation Core Facility enables the development of new scientific instruments in order to further research at Harvard Medical School and affiliated institutions. Special preference is given to projects intended to generate novel instruments for cutting-edge research in neuroscience and the root causes of neurological dysfunction.

HMS Systems Biology Flow Cytometry Facility


Our facility houses two state-of-the-art BD analyzers with high-throughput capability, a Stratedigm benchtop analyzer, a high-speed BD cell sorter, and both Mac and PC workstations for data analysis. Sorting services are offered through the facility, as well as instrument and software training.

HSCI Humanized Neonatal Mouse Center


There is a growing need for animal models to carry out in vivo developmental and regenerative medicine studies of human cells, tissues and organs. The Humanized Neonatal Mouse Center (HNMC) was created to accelerate research in the stem cell field by providing humanized mouse models to study human stem cell engraftment and differentiation in regenerative medicine. We have over 4 years of experience in constructing different types of humanized mouse models, including neonatal heart, lung and kidney injury models. We have extensive experience in hematopoietic stem cell reconstruction. It is our goal at HNMC to facilitate collaborative research in human stem cell biology, where physiologically relevant microenvironments (niches) may be created in vivo to study human stem cell fate and function under experimental settings where disease, damage or degenerative conditions can be controlled. We can provide customized humanized mouse models to the HSCI research community, to collaborate on research studies of common interest, and to advance the general use of these models for a broad range of translational and preclinical studies.

HSCI iPS Cell Core Facility


The HSCI iPS Core facility was created to accelerate research in the stem cell field by facilitating the derivation and distribution of iPS cell lines. Disease-specific iPS lines provide us with a unique opportunity to study the mechanisms of disease and ultimately to develop new treatments. The iPS Core serves as a repository for iPS cells produced by HSCI scientists and functions as a laboratory to produce disease-specific lines for sharing with the HSCI and broader research community.

HSCI-CHB Flow Cytometry Research Lab


The lab is committed to meeting all the flow cytometry research needs of the HSCI, BCH, DFCI and Harvard communities. We are continuously improving our equipment and software to bring the latest instrumentation and capabilities to our users for cell sorting and analysis. Since being established in August of 2008, under the Direction of Ronald Mathieu, Ph.D, ASCP, the lab has contribute to a significant amount of publications and brought forth many collaborations.

HSCI-CRM Flow Cytometry Core Facility @ MGH


The HSCI-CRM Flow Cytometry Core Facility seeks to provide high quality, accessible cytometry sorting and analysis services to laboratories in the Center for Regenerative Medicine, Harvard Stem Cell Institute, and MGH research communities at an affordable rate. The Core's equipment and highly trained operators provide an advanced level of sorting and analysis services to its investigators. Additionally, the Core is dedicated to training users on all aspects of flow cytometry, including basic theory, information about specific applications, and critical interpretation of sorting results. The Core's four full-time staff members strive to ensure that each investigator's visit benefits their individual experiments to the greatest extent possible. To ensure the best availability to all users, the Core offers an online scheduling system, and provides extended sorting hours until late evening.

HSCI faculty have reduced pricing for use of the Core's services.

Harvard Center for Biological Imaging (FAS)


The Harvard Center for Biological Imaging (HCBI) was created to foster collaborative research in the most state-of-the-art facility available. To do this, a unique partnership with Carl Zeiss Microscopy has been established in which microscopy systems are replaced every 2-3 years, ensuring access to only the most up-to-date imaging systems. The facility is open 24 hours/day, 7 days/week and access to the HCBI is open to all academic and industrial researchers.

Harvard Chan Bioinformatics Core (HBC)


The Harvard Chan Bioinformatics Core (HBC) offers consultations on basic questions in research computing, bioinformatics, and computational biology during the initial stages of study design and grant proposals as well as for ongoing, funded studies requiring external expertise.

Core staff support researchers within the Harvard community throughout the scientific life cycle, on issues such as:
● experimental design and methods development
● grant support and development of manuscripts
● data quality assessment and analysis

Harvard Chan Microbiome Analysis Core


The Microbiome Analysis Core at the Harvard T.H. School of Public Health (HMAC) provides end-to-end support for microbial community and human microbiome research, from experimental design through data generation, bioinformatics, and statistics. This includes general consulting, power calculations, selection of data generation options, and analysis of data from amplicon (16S/18S/ITS), shotgun metagenomic sequencing, metatranscriptomics, metabolomics, and other molecular assays. The HMAC has extensive experience with microbiome profiles in diverse populations, including taxonomic and functional profiles from large cohorts, quantitative ecology, multi'omics and meta-analysis, and microbial systems and human epidemiological analysis. By integrating microbial community profiles with host clinical and environmental information, we enable researchers to interpret molecular activities of the microbiota and assess its impact on human health.

Harvard Gene Therapy Initiative Core (HMS)


The Harvard Gene Therapy Initiative was founded with the objective of promoting the use of gene therapy in both research and therapeutic applications and to conduct research developing new gene delivery vector technologies.

Harvard NeuroDiscovery Center - Advanced Tissue Resource Center (HMS)


The NeuroDiscovery Advanced Tissue Resource Center (ATRC) provides state-of-the-art molecular pathology resources to the Harvard community. Current resources include laser capture microscopy, DNA/RNA/miRNA quality/expression analysis, Luminex FlexMap 3D multiplex bead cytometry, and real-time PCR.

Users should use the ATRC online calendar to check instrument availability prior to booking time. All booking is done directly with ATRC staff.

The ATRC is a fee-for-use facility. For NeuroDiscovery members, the first 10 hours of training, consultation and instrument use is free. This initial period is intended to provide a first time user with preliminary data/proof of concept regarding their project, and is generally sufficient when investigators work under the aegis of ATRC staff. Thereafter, the base fee varies depending on activity and the extent of your proposed work. Project-based charge-back agreements for large projects can be negotiated with the ATRC Director, Dr. Charles Vanderburg.

Before using the facility, investigators are required to submit an ATRC user form including a brief research summary of their proposed project to the core director. For more information, or to schedule your initial visit, please contact the ATRC.

Although priority is given to NeuroDiscovery members investigating neurodegenerative diseases and the CNS, the facility is also available to any academic investigators within the Harvard medical community and the greater-Boston research community. Under special arrangements the facility may also be made available to the commercial sector. Please contact ATRC Director, Dr. Charles Vanderburg, for details.

Harvard NeuroDiscovery Center - Biomarker Study (HMS)


The Harvard NeuroDiscovery Center Biomarker Study aims to discover and validate biomarkers for neurodegenerative diseases.

Harvard NeuroDiscovery Center - Biostatistics Consultation (HMS)


High quality statistical support is important in the preparation of grant applications or study protocols for clinical trials. Such support typically is not readily available to investigators who are new to clinical trials. To address this weakness, the NeuroDiscovery Center provides consulting and collaborative services to its members who are engaged in clinical research applicable to neurodegenerative disease.

Harvard NeuroDiscovery Center - Enhanced Neuroimaging Core (HMS)


The Enhanced Neuroimaging Core offers comprehensive training, consultation and support throughout every phase of an imaging experiment. Image acquisition is available on several systems offering confocal, multi-photon, epi-fluorescence, brightfield, DIC, phase contrast, and 6D live cell imaging. Image analysis is supported through several high-end analysis platforms. Please contact Lai Ding, the optical imaging manager, or Daniel Tom, the optical imaging specialist to discuss your imaging needs.

Health Communication Core (DF/HCC)


The Health Communication Core offers a full range of creative communication services to support evidence-based recruitment and retention of study participants and intervention research. HCC serves researchers from diverse disciplines who need websites, logos, brochures, social media campaigns, publications, and interactive media targeted to the needs and preferences of specific audiences.

High Resolution Peripheral Quantitative Computed Tomography Core Facility (MGH)


The High Resolution Peripheral Quantitative Computed Tomography (HR-pQCT) Core Facility offers measurements of the microscopic internal structure of cortical and trabecular bone in the distal radius and tibia. Additionally, the HR-pQCT Core Facility offers Finite Element Analysis to estimate key biomechanical properties of the bone including failure load and stiffness.

By scanning the distal radius and tibia, the HR-pQCT Core can measure a variety of important parameters reflecting the integrity or cortical and trabecular bone. This information cannot be determined using standard clinical imaging techniques such as dual-energy x-ray absorptiometry (DXA). A scanning appointment is a 30 minute addition to a clinical research visit and involves less radiation exposure than traditional bone densitometry. With applications for both cross-sectional and longitudinal research, investigators have employed our facilities and expertise to study a variety of bone-related diseases with participants ranging in age from children to the elderly.

The goal of the HR-pQCT Core is to provide facilities and personnel on a per study basis, allowing investigators access to important information about bone structure and function without requiring special expertise and equipment.

Getting Started: To begin organizing a cohort for HR-pQCT studies or to inquire further, please contact the Core Director, Dr. Joel Finkelstein.

Histology Core (BIDMC)


The function of the Histology Core is to provide services in paraffin histology for cells and tissues including:

*routine staining

Work is done on a fee-for-service basis with a graded fee structure.

Supplemental funding is provided by BIDMC and the Harvard Digestive Disease Center (HDDC). Priority use and reduced fees are given to investigators with these affiliations.

Human Neuron Differentiation Service Core (HNDS) at Boston Children’s Hospital


The Human Neuron Differentiation Service (HNDS) is one component of the Human Neuron Core, comprised of the HNDS and the Assay Development and Screening Facility (ADSF), that will exploit transformative stem cell technology for both modeling of specific diseases and screening of test compounds in human neurons derived from induced pluripotent stem cells (iPSCs). The goals of this service are to: (1) develop standard operating procedures for the generation of different types of neuronal cell lines; (2) create neuronal cell lines from iPSCs derived from patients with specific diseases and from healthy controls; (3) compare key characteristics (e.g. shape, growth, synaptic connectivity, protein composition) of patient-derived and control-derived neurons; (4) identify disease-specific characteristics in patient-derived neurons; (5) screen drug candidates in disease-specific cell lines to greatly increase the speed and specificity of drug discovery; and (6) compare results of these “pre-clinical” drug trials with clinical trials in patients.

We provide reproducible quality-controlled preparations of neurons that release preclinical research lab personnel from labor required for neuron production to focus on the execution of cutting edge research. The core can receive iPSC lines under IRB approval from patients characterized by clinicians in other Massachusetts hospitals. The phenotyping service will be of particular value to clinical investigators who work closely with patients, but may lack basic science skill sets needed to establish iPSC lines, derive specific neurons from these and conduct sophisticated phenotypic analysis.

Human Sample Procurement Core Facility (HMS)


The Human Sample Procurement Core will support translational research endeavors within the JDRF Center by providing the Center's laboratories access to well-characterized blood samples from patients with diabetes at different stages of the disease. This availability will greatly facilitate the translational exploration of concepts and targets emerging from the basic research projects.

Individuals with T1D (recent onset, long-standing Type-1 diabetes) and matched controls (healthy or T2D) will be recruited from the patient population at the Joslin Diabetes Center and neighboring institutions. The Core will perform and record a basic characterization of patients and their samples. This analysis will include a thorough evaluation of clinical characteristics from a diabetes and autoimmune standpoint, and an immunogenetic workup (outsourced to Joslin or other cores): autoantibody determination, HLA typing and genotyping for the best recognized susceptibility loci (INS, PTPN22, CTLA4). A relational database will be adapted to record all patient information, copies of which will be provided in a de-identified manner to the investigators.

ICCB-Longwood Screening Facility (HMS)


The ICCB-Longwood Screening Facility provides resources and assistance for designing, conducting, and interpreting high-throughput compound and functional genomics screens. ICCB-Longwood is staffed by full-time personnel with expertise in lab automation, biochemistry, cellular and molecular biology, microbiology, HTS microscopy, and data analysis. The facility employs a staff-assisted screening model, in which investigators using the facility are provided with access to compound and functional genomics (siRNA, arrayed sgRNA, miRNA mimic and inhibitors) libraries, and training in the use of some instruments, such as liquid handling equipment, plate readers, and screening microscopes. Staff members provide assistance at all stages of the screening process and perform complex automation steps. Most equipment, as well as automation support, is also available to non-screening scientists.

Image Management Core (HMS)


The Image Management Core provides software and services for the storage, management and sharing of microscope images and metadata.

Image and Data Analysis Core (HMS)


IDAC provides image data analysis services to individual labs and core facilities at Harvard Medical School, including the ICCB-Longwood Screening Facility (ICCB-L), the Drosophila RNAi Screening Center (DRSC), and the Nikon Imaging Center (NIC).

Imaging Solutions for Scientific Communication (HMS)


Imaging Solutions for Scientific Communication positions digital imaging resources right where the research is being done: in Harvard Medical School's quad-based basic science departments. The convenience of these locations makes it easy for researchers to access digital imaging expertise when faced with research imaging questions. This accessibility and convenience is supplemented by substantial web-based assistance, making Research Imaging Solutions a 24/7 resource. Seminars, Workshops and printed training materials guide faculty, students, post-docs and lab personnel on supported imaging hardware and software products. Supported hardware and software packages includes: Adobe products including Acrobat, Photoshop, and Illustrator; ACD Canvas; Microsoft Office applications including Word, PowerPoint and Excel; film recorders, slide and flatbed scanners, and color output devices such as color laser printers, poster printers and photo quality printers.



The InSIGHT Core helps researchers and quality improvement teams use the vast array of data available in today's healthcare world. As a part of operations, BIDMC collects and stores large amounts of electronic data. We also have an extensive research and quality improvement community.

However, high-quality analysis of this data requires iterative refinement of queries and cohort building by experts familiar with both the data and with working with investigators and improvers. The InSIGHT Core provides a translation layer, helping our researchers and QI teams get access to reliable, high quality data in a way they can use it.

Inorganic Chemistry Laboratory (HSPH)


Analysis of air pollution samples: including gravimetric determination of particle mass from filter samples; chemical analysis for passive and active samples of pollutant particles and gases; instrumental analysis of elemental and organic carbon collected on quartz fiber filters; trace elemental analysis of filter samples, and ; reflectance analysis of atmospheric black carbon.

Islet Isolation Core (JDC)


The main objective of the Islet Isolation Core is to provide Islets of Langerhans to investigators in the Boston area and beyond. By receiving islets from the Core one is assured of consistent high quality and purity of islets for experiments. The Core can isolate rodent and neonatal porcine islets. This leaves the investigator to concentrate on experiments rather than the complexity of islet isolation.

Longwood Small Animal Imaging Core Facility (BIDMC)


Our goal is to provide state-of-the-art small animal imaging services to researchers in the Longwood Medical Area of Harvard Medical School. These services include multi-modality imaging, advanced data analysis, image fusion resources, and a satellite animal facility for longitudinal studies. A detailed description of our instruments and services are provided on our website, and we welcome questions and comments.

Lurie Family Imaging Center (LFIC)


The Lurie Family Imaging Center is the pre-clinical arm of the Center for Biomedical Imaging in Oncology (CBIO). The LFIC is a state-of-the-art 14,000 square feet preclinical imaging facility that provides investigators with access to all major pre-clinical imaging and therapeutic modalities as well as upcoming radiochemistry technologies, including: Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), Magnetic Resonance Imaging (MRI), Computed tomography (CT), Ultrasound (US), Optical imaging (bioluminescence, BLI, and fluorescence, FLI), and Imaging guided radiation therapy (IGRT). The interdisciplinary in vivo translational studies conducted at the LFIC focus on cancer, with an emphasis on molecular, functional, and anatomical imaging combined with quantitative metrics based on specific mechanisms of tumor biology, such as:

• Detection of primary tumor and whole body metastases (solid and liquid tumors)
• Multimodality imaging of cancer
• Assessment of novel cancer therapeutics and go/no-go decision (co-clinical trials)
• Pharmacodynamic endpoints of drug effects on target, pathway, and downstream biological processes
• Early assessment of drug resistance
• Development of novel imaging probes and strategies

MGH Biomedical informatics Core


The MGH Biomedical informatics Core (MGH BMIC) serves the information management and analysis needs of the MGH/Partners/Harvard research community as well as non-profit organizations and industry. MGH BMIC has expertise in biomedical informatics, and leverages re-usable tools developed by the group to offer services in a cost-effective manner.

MGH Biostatistics Center


The Biostatistics Center provides support to MGH investigators, as well as serving as a Coordinating Center for several NIH-supported projects. The Center's staff includes biostatisticians, physicians, research nurses, data managers, project managers, research assistants, and computing staff.

MGH Gordon PET Core


The MGH Gordon PET Core provides investigators with required personnel, equipment, and services to design and conduct research studies using positron emission tomography.

MGH Metabolic Imaging Core


The MGH Metabolic Imaging Core offers specialized imaging techniques including quantitative computed tomography (QCT), magnetic resonance (MR) spectroscopy of muscle and high-resolution MR imaging. These techniques are employed for studies evaluating body composition and metabolic disorders of muscle, bone, marrow, cartilage and liver. The Core also performs imaging for anatomic and structural studies in humans, phantoms and cadaveric specimens.

MGH Pathology: Flow, Image and Mass Cytometry Cores (Simches and CNY locations)


The core facilities at MGH Pathology provide flow cytometric cell sorting and analysis, image analysis and mass cytometry with the most sophisticated instruments currently available. There are two facility locations, one at MGH (Simches) and another at the Charlestown Navy Yard (CNY).

Flow Cytometry (Simches and CNY): The core is able to analyze and physically separate cells based upon features detectable with fluorescently labeled monoclonal antibodies. We are able to sort unfixed specimens in our BSL2+ FACSAria Fusions, at both our Simches/Boston and Charlestown Navy Yard locations.

Multispectral Imaging Flow Cytometry (Simches): The Amnis technology combines flow with fluorescent and bright field image based analysis.

Mass Cytometry (CNY): Helios, which is a CyTOF (cytometry by Time-Of-Flight) system, permits single-cell analysis using stable heavy metal-tagged antibodies (~35) rather than fluorescent moieties.

Magnetic Resonance Laboratory (FAS)


Welcome to the Magnetic Resonance Facility of the Department of Chemistry and Chemical Biology, Harvard University, in the Laukien-Purcell Instrumentation Center.

Martinos Center for Biomedical Imaging Core Facility (MGH)


The Martinos Center's dual mission includes translational research and technology development. The core technologies being developed and used at the center are magnetic resonance imaging (MRI) and spectroscopy (MRS), magnetoencephalography (MEG) and electroencephalograpy (EEG), near infra-red spectroscopy (NIRS) and diffuse optical tomography (DOT), Positron Emission Tomography (PET), electrophysiology, molecular imaging, and computational image analysis. A particular area of innovation at the Center is Multimodal Functional Neuroimaging which involves the integration of imaging technologies. We are also world leaders in the development of primate neuroimaging techniques. Major areas of research at the center include, psychiatric, neurologic and neurovascular disorders, basic and cognitive neuroscience, cardiovascular disease, cancer and more. With an extensive and expanding inventory of state-of-the-art imaging facilities, a world class team of investigators and collaborators, and important government, industry and private supporters, the Martinos Center is leading the way to new advances and applications in biomedical imaging.

Mass Spectrometry Core (BIDMC)


The mass spectrometry, proteomics, metabolomics and lipidomics facility at Beth Israel Lahey Health/Beth Israel Deaconess Medical Center was established in 2004 led by Dr. John Asara and continues to grow rapidly with expanding multi-omics services. We provide excellent proteomics, metabolomics and lipidomics services with low prices and fast turnaround times. We have cutting edge instruments operated at optimal sensitivity and work and publish with world class researchers. We also maintain an active internal cancer proteomics and small molecule research program with collaborative efforts. Our expertise is in identifying and quantifying protein modifications and dynamic protein-protein interactions in addition to polar metabolomics profiling, flux analysis and lipidomics profiling. We accept collaborations from anywhere in the world and look forward to helping you and progressing your research to the next level.

Mass Spectrometry and Proteomics Research Laboratory (FAS)


The FAS Center for Systems Biology Mass Spectrometry and Proteomics Resource Laboratory provides mass spectrometry and strategic consulting in Proteomics and Small Molecule analysis for Life Science and Chemistry researchers as well as others worldwide. This resource brings together the state-of-the-art expertise and instrumentation of the Microchemistry and Proteomics, CCB Mass Spectrometry, and Bauer Center Core laboratories, leveraging our breadth of experience to provide the best possible support for your research.

Massachusetts Host-Microbiome Center (BWH)


The Host-Microbiome Center supports studies evaluating contributions of the microbiota in health and disease. Core resources include:

(1) Gnotobiotic (germfree) animal facility with 60 isolators and 600 cage-containment system for SPF housing and short-term gnotobiotic or indefininte complex associations. The germfree core maintains common gnotobiotic stocks for experiments and assists investigators in setting up experimental systems and maintaining breeding colonies of dedicated lines.

(2) Microbiology Unit which provides microbiologic support for culture of aerobic and anaerobic species, biochemical characterizations, continuous chemostat/fermenter analyses, metabolite phenotyping of short chain fatty acids (SCFA), and has access to a large strain repository of human and animal commensal species and pathogens, including genetically tenable strains and systems developed by the unit.

(3) Molecular Unit which offers next generation sequencing (NGS) studies including 16S rRNA gene phylotyping, bacterial whole genome sequencing, and multiple qPCR/rtPCR analyses.

(4) Computational Unit which evaluates complex, longitudinal dynamics of the microbiota and maintains dedicated compute nodes in a HIPAA-compliant environment in the Partners ERIS compute cluster. Computational faculty have developed novel algorithmic approaches to study microbiota dynamics at the organismal and gene-level, and to incorporate host co-variates.

(5) CLIA (clinical laboratory) Unit, which provides clinical trials support for microbiome and other clinical studies and access to discarded clinical samples.

(6) Administrative Unit for assisting investigators with preparation of IRB and IACUC protocols, developing project quotes and providing project management support.

The Center is supported in part by a Massachusetts Life Sciences Center (MLSC) capital grant, and provides support to academic, non-profit and commercial groups within the state and beyond.

McLean Hospital Animal Care Facility


The McLean Hospital Animal Care Facility provides services to the research community at McLean mainly by ensuring adequate animal housing, animal care services and research environments. It is dedicated to consistently providing high customer satisfaction by rendering excellent service, quality care and an atmosphere conducive to accomplishing quality research. Being located in a psychiatric hospital, there is a unique opportunity for collaboration between research and clinical.

McLean Hospital is located at 115 Mill Street, in Belmont, Massachusetts. Research is conducted in multiple areas across campus including in Core holding facilities, at imaging locations and in satellite facilities. Having holding locations across campus allows the necessary research equipment to be accessible without the need to transport animals all the time through the Hospital.

Seven full time Animal Care Technicians are employed throughout the animal facilities located on the Hospital campus. They come from varying backgrounds and it is their responsibility to maintain a quality environment for the animals and monitor their health and well-being.

McLean Hospital Microscopy Core Facility


The McLean Hospital Microscopy Core Facility, located in the Mailman Research Center (MRC), is a shared user facility that supports basic scientific imaging and cell sorting research efforts within the McLean Hospital research community. Users from other Institutions are also welcome, with prior approval from the Core Director. Major instrumentation offered by the Core includes a JEOL JEM1200EX Transmission Electron Microscope (TEM), a recently acquired state-of-the-art Leica SP8-TCS Laser Scanning Confocal Microscope (LSCM), and a newly acquired Bio-Rad S3 Fluorescence Activated Cell Sorter (FACS).

McLean Hospital Research Pharmacy Core


The McLean Hospital Research Pharmacy provides a variety of medication related services to investigators throughout the course of their study. From initial protocol review through study closeout, we can assist as needed at any stage.

McLean Imaging Center (MIC) Core


The McLean Imaging Center (MIC) Core provides Magnetic Resonance Imaging (MRI) services to Partners-affiliated and non Partners-affiliated researchers. The available facilities of the Core include several MR machines at different field strengths (3T, 4T and 9.4T), optical imaging equipment, sophisticated mechanical and electronic fabrication equipment, and an extremely powerful computational cluster.

The MIC is an academic, multidisciplinary center comprised of scientists with a diverse range of backgrounds and training, including neuroscience, pharmacology, physics, electrical engineering, psychology, psychiatry, and medicine. The wider hospital also provides rich resources for collaboration – MIC staff members have many collaborative projects in conjunction with the clinical departments throughout the hospital. Furthermore, the proximity of collaborators at numerous nearby universities and downtown hospitals provide a vast array of opportunities to study various patient populations and provide access to an extensive variety of specialized equipment.

Media Core (JDC)


The main objective of the Joslin's Media Core is to reduce the cost and labor of making tissue culture media and other reagents required by the Joslin investigators. By centralizing preparation of these reagents, the Core provides high quality reagents at a significantly reduced cost to the investigators. In addition, the Core provides services to overcome labor intensive reagent needs, like plate pouring services and preparation of specialized buffers and reagents for cell and molecular studies.

The Media Core makes and provides over 10 different mammalian tissue culture media to the Joslin investigators for their studies. In addition, the Core prepares and provides several buffers and solutions to the Joslin investigators. The core also makes a variety of broths and agars for growing bacterial cultures, and provides agar plates and plate pouring service to the investigators. Over the past five years (2006-2010), by preparing and providing over 6250 liters of media and 2850 agar plates per year to the Joslin investigators the Media Core serves an important function in the efforts of these investigator to find cure for diabetes and its complications.

Medical Research Group


The Medical Research Group (MRG) is involved in collaborative clinical research studies and committed to the development of superlative research at Brigham and Women’s Hospital and Brigham and Women’s Faulkner Hospital.

The Medical Research Group conducts clinical research studies and has extensive experience in the design, implementation and coordination of sponsored human research. The MRG investigators are involved in basic and clinical research in human subjects.

Areas of interest of the MRG include Cardiovascular, Diabetes and Hypertension. The investigative efforts in these areas are paramount to the advancement of prevention, diagnosis and treatment of disease in patient populations.

Microarray Core Facility (DFCI)


The Microarray Core provides services for genome-wide analysis of gene expression, nucleotide variation, copy number variation, and chromatin protein binding sites. The core platforms include microarrays and "next generation" sequencing. Consultation on experimental design, and assistance with data analysis are also available.

The Microarray Core carries out gene expression profiling on 3' arrays and on Exon arrays; genotyping and comparative genomic hybridization both on single nucleotide polymorphism (SNP) arrays, and Chromatin ImmunoPrecipitation localization (ChIP-on-Chip). All services use oligonucleotide microarrays. Biostatistical support to assist in analyzing the data is available. The services of the Core are accessible to DFCI investigators and to investigators outside of DFCI.

Microbe Identification Core


This is a user-run core that features a Bruker MALDI-TOF MS Biotyper and associated software for the identification of microorganisms. The primary use case for our core is the identification of a set of unknown bacterial or fungal strains from a pure colony on a culture dish.

Molecular Analysis Facility (HSPH)


Equipment access: These machines are primarily for use by Harvard-NIEHS Center Core members. Center members will be prioritized. All new users must be trained by the appropriate facility manager and be approved to use the equipment in the facility. Users will be charged a fee for this training. All users must obtain the financial approval from their PI and financial manager. Please submit a PO number or the Harvard billing code prior to the first use of the facility.

Molecular Biology Core Facilities (DFCI)


The Molecular Biology Core Facilities (MBCF) was created in 1986 to allow investigators at the Dana-Farber Cancer Institute access to cutting edge molecular biology tools which would be tested and developed in a shared setting. Collaborations can be set up with anyone in the world. Although these services are primarily focused on cancer and AIDS research, there is a broad spectrum of research that uses these resources.

Molecular Cancer Imaging Facility (MCIF)


The MCIF mission is to advance therapeutic and diagnostic research through radiotracer development for research investigators. MCIF helps investigators quickly move discovery-stage concepts to in-vivo models, generating data to support grant applications, publications, and drug development efforts.

Molecular Electron Microscopy Facility (HMS)


The molecular electron microscopy facility at Harvard Medical School is predominantly used for our own research and can therefore not be considered a service facility. We are, however, committed to make our technology available to as many research groups in the community as possible. If you are interested to use molecular electron microscopy, please contact us by phone or email.

Molecular Genetics Core Facility (BCH)


The Molecular Genetics Core Facility (MGCF) is a non-profit core laboratory in the Program in Genomics and Genetics Division of Children's Hospital Boston offering genomics services for academic research institutions. The majority of MGCF users are investigators from Children's Hospital Boston and the surrounding Harvard affiliates, but the MGCF also serves laboratories throughout the entire United States. The MGCF is comprised of a compilation of smaller cores partially supported by private and federal funds. Funding is provided in part through The Intellectual and Developmental Disabilities Research Center, The Manton Center for Orphan Disease Research, The Wellstone Center for Muscular Dystrophy, and The Neuromuscular Disease Project of the Program in Genomics at Children's Hospital Boston.

The overall objective of the MGCF is to provide a location where researchers can have access to high quality, low cost genomic technology services and expertise in a timely, affordable manner. The services offered include DNA sequencing, Next-Gen sequencing, Affymetrix and Illumina whole-genome expression and genotyping microarray technology, microsatellite genotyping, and high-throughput qPCR and SNP services on the Fluidigm Biomark System. The MGCF also assists investigators with project design and collaborates on linkage and association study analysis.

Molecular Medicine Core (BIDMC)


The core is equipped with the following instruments: BIO-RAD QX200 Droplet Digital PCR System, Illumina MiSeq Next Generation Sequencer, Arcturus XT Laser Capture Microdissection System, Agilent 4200 TapeStation Bioanalyzer, Covaris E220 Ultra-Sonicator, ABI 7000 and 7500 Fast Real-Time qPCR systems.

On an hourly fee basis we provide: training on equipment usage, consultations, core setup, data analysis, troubleshooting, primer design. On per sample or per run fee basis we provide: ddPCR runs, qRT-PCR runs, MiSeq NGS runs, quality and quantity DNA and RNA analysis, and Covaris ultrasonicator sample shearing.

For details contact Dr. Petkova.

Molecular Pathology Core Lab (MPCL)


The Molecular Pathology Core Laboratory (MPCL) works to advance molecular pathology-based cancer research. The group addresses significant scientific and clinical research needs and has created a central hub where researchers can interact, collaborate, and utilize novel molecular pathology technologies to translate basic science discoveries into patient care applications for cancer. Our mission comprises comprehensive pathology annotation to encompass clinical, morphological, and molecular characteristics, genetic discovery in primary human tumors, with limited material and in real time, novel biomarker identification and pre-clinical trials, and transitioning assays to the clinical setting

Molecular Phenotyping and Genotyping Core (JDC)


The objective of the Molecular Phenotyping and Genotyping Core is to support investigators in the study of molecular mechanisms of disease by providing equipment, expertise, and services in molecular phenotyping, including nucleic acid sequence analyses, gene expression, and other "-omics" analyses, which would be too specialized or costly for individual laboratories to perform independently. Formerly known as the Advanced Genomics and Genetics Core, the Molecular Phenotyping Core is newly-named in recognition of the expansion of its analytical capacities to reflect not only genetic and genomic analyses but also metabolic phenotyping.

Molecular and Cellular Biochemistry Core (BCH)


The Molecular and Cellular Biochemistry Core is dedicated to providing HDDC investigators and their trainees with access to a variety of methods to determine the compositions of tissues, as well as their cellular and subcellular specimens. The Core Scientists offer a broad range of analyses and preparatory services including Proteomics. Importantly, the Core also provides training in the application of state-of-the-art techniques in molecular analysis of proteins, lipids and nucleic acids. The main Core laboratory is located at Brigham and Women’s Hospital (BWH) and the satellite Core laboratory is located at Children’s Hospital
Boston (CHB).

We perform a broad array of biochemical and analytical assays that are not typically available within laboratories of HDDC members. These have generally been adapted so that they may be performed in large numbers on microplates. These include quantification of lipids, mRNA and protein and a full array of mass
spectroscopy services for protein analysis (and soon to be expanded for lipidomics). We also offer both analytical and preparatory separations by a variety of methods.

Mouse Behavior Core


The Mouse Behavior Core (MBC) is a state-of-the-art research facility established by Harvard Medical School (HMS), in collaboration with Brigham and Women’s Hospital (BWH). The MBC is available to all members of the research community.

The goal of the MBC is to provide the highest quality of behavioral assessment in mice to the research community.

The MBC is outfitted with multiple rooms of equipment for behavioral testing in mice. Available assays include models of anxiety, depression, learning and memory, attention, social interaction, motor activity and coordination, and a 24 hr/day system that monitors locomotor activity, food intake, and metabolic measures. The surgical suite is outfitted with two stereotaxic frames. Housing is available in an adjacent vivarium.

Mouse Imaging Program (MGH)


The Mouse Imaging Program (MIP) at the Center for Systems Biology is a uniquely integrated imaging resource providing the larger Harvard/MIT research community with access to state-of-the-art in vivo imaging technologies. The program offers magnetic resonance imaging (MRI), positron emission tomography (PET-CT), single photon emission computed tomography (SPECT-CT), computed tomography (CT), bioluminescence (BLI), fluorescence mediated tomography (FMT), and various other fluorescence imaging technologies. The fully integrated program also provides mouse holding facilities for serial imaging, surgery, anesthesia and veterinary care. Image reconstruction, 3D display, fusion, quantitative image analysis and online data access are also available. The program performs its own research, aimed at continuously improving existing imaging technologies and has deep knowledge of cardiovascular, oncology and neurological mouse models of disease. A list of publications made possible by utilizing MIP resources is available on the Program web site. Imaging requests may be submitted through the MIP website.

Multi-Gene Transcriptional Profiling Core (BIDMC)


Multi-Gene Transcriptional Profiling (MGTP) is a real-time PCR based technique, developed in our lab, for quantifying mRNA copy numbers per cell with high reproducibility and accuracy.

Primary Goals of the MGTP Core:

* To make MGTP services available to investigators, and assist them in advancing their research and obtaining grants;
* To assist studies of molecular signaling mechanisms and pathways, discovery of biomarkers, and development of clinical assays; and
* To share the resources of our primer library, which currently includes about 2400 pre-validated human, and mouse genes.

The MGTP Core makes these unique and powerful capabilities available to biomedical researchers. Thousands of pre-validated primers are available for use, and others can be designed on demand.

Nascent Transcriptomics Core (NTC)


The mission of the Nascent Transcriptomics Core (NTC) is to offer the community a resource for the analysis of nascent transcription, providing direct insights into gene regulation and enabling highly-sensitive identification of enhancers and long non-coding RNAs.
We offer consultation on experimental design as well as library construction services for Start-seq, PRO-seq and metabolically labeled RNA-seq (e.g. TT-seq). In addition, the NTC looks forward to expanding these offerings as we develop and optimize new RNA sequencing methods in partnership with the HMS community.
Analysis of nascent RNA, meaning RNA being actively synthesized by RNA polymerase, reveals the process of transcript elongation. This directly exposes alterations in patterns of gene expression and identifies unstable splicing intermediates or non-coding RNA transcripts that are challenging to detect by total RNA sequencing. Some applications of nascent RNA analysis include:

  • Pinpoint enhancers by sequencing enhancer RNAs

  • Define long non-coding RNAs expressed in a specific cell type or condition

  • Identify sites of transcriptional initiation or pausing at single-nucleotide resolution

  • Observe unstable RNA processing intermediates, and calculate rates of RNA processing or decay

Neurobiology Imaging Facility (HMS)


The Neurobiology Imaging Facility is the Neurobiology Department core facility for light microscopy.

Our mission is to advance research by providing services in optical imaging, introducing new optical imaging equipment, providing learning opportunities to researchers in the Longwood area and increasing the general imaging expertise of neuroscientists.

Neurodevelopmental Behavior Core (BHC)


The Neurodevelopmental Behavior Core (NBC) was designed to provide a time-efficient and cost-effective service for the comprehensive characterization of complex behaviors in mouse models of neurodevelopmental disorders, and for testing novel therapeutic drugs and interventions in mouse models of these human disorders. The NBC provides the necessary equipment, protocols and technical support for studying neurodevelopmental disorders, focusing not just on “snapshots” but changes in developmental milestones over time. The Core is equipped to perform extensive batteries of behavior tests that phenotype specific social, emotional and cognitive behaviors, as well as motor, auditory and visual function, together with measures of the general health of the animals. This behavior facility also provides a unique opportunity for training fellows, graduate and undergraduate students as well as PIs.

The NBC is available for use by BCH and non-BCH scientists.

NextGen Sequencing Core (MGH)


The NextGen Core is a collaboration between the Department of Molecular Biology, the Center for Human Genetics Research, the Center for Computational Biology, and the Executive Committee on Research (ECOR).

Currently, the Core operates using a single Ilumina HiSeq instrument, accompanied by Illumina's cBot for cluster generation. This upgrade from our Genome Analyzer II doubled our capacity and greatly increased the data amount, quality, and stability over extra-long reads.

The Core is located in the state-of-the-art Richard Simches Research Center on Cambridge St. as part of the MGH main campus in Boston. The many multi-investigator groups in the building - including those that study human genetics, stem cells, genomics, and more - make it the perfect location for the Core to service the researchers in those groups. The majority of customers come from MGH, but we also service customers at other academic medical centers and industry.

Nikon Imaging Center (HMS)


The mission of the NIC@HMS is to: enhance basic research by providing access to state-of-the-art microscopy and imaging equipment, provide training courses on basic and advanced light microscopy techniques for the benefit of HMS and the greater Boston research community, introduce the latest innovations in light microscopy and imaging to the HMS community, serve as a learning center for our corporate partners and contributions, and provide a dedicated NIC@HMS director for ongoing technical consultation and support.

Non-Coding RNA Core Facility


The ncRNA Core is a state-of-the-art informatics/sequencing/imaging/delivery/
preclinical facility dedicated to non-coding RNA at Beth Israel Lahey Health/Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School (HMS). We will offer the following services to all researchers:

1) Detection, quantification and discovery of ncRNAs including in research and clinical specimens
2) Specialized bioinformatics for interpretation of ncRNA discoveries
3) Precision delivery of ncRNA therapeutics to diseased tissue in vitro

The ncRNA Core is co-directed by Dr. Frank Slack, Director of the Harvard Medical School Initiative for RNA Medicine (HIRM). Established in 2014 as the Institute for RNA Medicine and hosted by the BIDMC Cancer Center, the HIRM brings together leading investigators in the field to accelerate investigations into how non-coding RNA functions and how these insights can be used to develop new therapies.

The ncRNA Core is situated in BIDMC space ESB01A-H, which is located in the basement of the BIDMC East Building at 330 Brookline Avenue in the Longwood Medical area of Boston.

Nutritional Biomarker Laboratory


The Nutritional Biomarker Laboratory at the Harvard T.H. Chan School of Public Health has more than 30 years of expertise in the analysis of antioxidants and fatty acids in blood, tissues, and foods backed by external quality monitoring programs administered by the National Institute of Standards and Technology (NIST), the American Oil Chemists’ Society (AOCS), and the Centers for Disease Control and Prevention (CDC). More recently we have added a blood lipid panel, 25-OH vitamin D EIA assay, tyrosol and hydroxytyrosol in urine and plasma, and various ELISA-based assays. We are skilled at the development of new assays that are amenable to our instruments and are happy to discuss projects beyond the scope of our standard panels.

Optical Microscopy Core (PCMM @ Children’s Hospital Boston)


Confocal and multiphoton are modern fluorescence techniques in microscopy for generating optical sections from live or fixed biological specimens. In general, both techniques employ a point scanning and point detecting design. The confocal microscope achieves point detection by using a confocal pinhole to block off out-of-focus emission from the specimen. The multiphoton microscope, on the other hand, generates intrinsic point emission directly from the in-focus spot, thereby eliminating the need for a confocal pinhole. Subsequent scanning of the entire field of view results in an optical section. Computer reconstruction of serial optical sections, collected at consecutive axial (z) positions, can reveal the spatial localization of cells and tissues (sometime subcellular molecules) in 3D. The ability to see biochemical processes in live cells, in real time, sheds light on the vastly complex molecular world of cells and may allow IDI scientists to identify new targets for drugs that will treat exposure to dangerous toxins and bacteria as well as fight a wide variety of diseases.

Organic Chemistry Laboratory (HSPH)


The Organic Chemicals Service fosters research collaboration among Center members in the area of exposure biology by providing analytical tools and expertise needed to investigate organic compounds in environmental and occupational epidemiological research.

PCPGM Bioinformatics Core Facility


The PCPGM Bioinformatics Core recognizes that quantitative analytic methods are now central to the pursuit of biomedical research. Activities of the Bioinformatics Core range from the provision of "Services" to fully-collaborative grant-funded investigations.

PCPGM Biorepository for Medical Discovery


The Partners Biorepository for Medical Discovery (PBMD), operated by the Partners HealthCare Center for Personalized Genetic Medicine, aims to foster collaborations among investigators, physicians and patients seen at Partners HealthCare institutions. This Partners-wide project is at the forefront of developing the tools needed to expedite the discovery and introduction of new ways to fight disease.

As we advance the age of personalized medicine, it is critical that physicians and scientists work with large numbers of patients to advance the delivery of healthcare. The Biorepository provides an opportunity for patients to interact with investigative studies – safely, securely and privately – in ways that could have an enormous benefit for us all.

The Biorepository continues in a development phase, and is actively working with a number of groups at BWH and MGH who are consenting patients for clinical and translational research studies. Samples are maintained in an institution-wide repository which is a growing resource available to Partners investigators and research groups.

PCPGM Biosample Services Facility


The BioSample Services Facility (BSF) provides sample handling and preparation resources to investigators in the Partners research community. Our goal is to efficiently and effectively process specimens enabling the generation of high quality data via down stream processes.

All projects containing subject samples and submitted to the BSF for handling must be IRB approved in advance. All specimens must be entered into our Laboratory Information Management System (GIGPAD) prior to delivery to the BSF.

Our staff will work with you to design an implementation plan that would best fit your research needs.

PCPGM DNA Sequencing Facility


The DNA Sequencing Group at the Partners HealthCare Center for Personalized Genetic Medicine has a strong history of producing high quality, dependable, and informative results for collaborators and clients. The DNA Sequencing Group participated in the Human Genome Project, building the STS-Based BAC map for Human Chromosome 12, and providing Chromosome 12 tiling path clones to the Baylor Human Genome Sequencing Center for sequencing.

The group sequenced 113 BACs for the Mouse Genome Project, contributing 24 megabases of finished mouse sequences to the published Mouse Genome, as well as providing draft sequences for unique strains of several bacterial genomes, including Pseudomonas aeruginosa, and Vibrio cholerae. More recently, the group participated in identifying mutations linked to numerous diseases, either in collaborations or by providing client laboratories with full service resequencing and analysis.

PCPGM Genotyping Facility


"The Partners Genotyping Facility, part of the Partners HealthCare Center for Personalized Genetic Medicine (PCPGM), provides flexible, high quality, high-throughput SNP genotyping to the Harvard-Partners research community, including Harvard Medical School, hospitals in the Partners HealthCare network, investigators in the Dana-Farber-/ Harvard Cancer Center, and the Harvard School of Public Health. The portfolio of Genotyping methods at PCPGM now includes Illumina, TaqMan and TaqMan OpenArrays."

Note: DF/HCC members will receive the DF/HCC discount on both genotyping and sequencing services from our facility

PMB Microscopy Core (MGH)


The Microscopy Core of the Program in Membrane Biology (PMB) at MGH is equipped and staffed to provide a wide range of services to investigators from MGH and the Boston area scientific community in the area of light and electron microscopy. The Core is housed on the 8th floor of the Simches Research Center at MGH, and is directed by Dr. Dennis Brown, Ph.D. The Core will provide services ranging from complete performance of the technical procedures required, to full training of personnel. Among the techniques available are laser scanning confocal microscopy, spinning disk confocal microscopy, tissue fixation, sectioning, immunostaining and conventional immunofluorescence microscopy, image analysis, and all aspects of electron microscopy including immunogold staining. The Core facility provides a unique and important resource for members of the scientific community as they approach a variety of research problems that call for these advanced microscopy techniques.

Thus, the Microscopy Core has a variety of menus to fit the microscopy and immunocytochemistry needs of most PIs. Interaction usually involves a preliminary discussion with the Core director and/or other Core staff who will be involved in the work. Intellectual and practical input are then tailored to fit individual requirements.

Pancreatic Islet Isolation Core (MGH)


The purpose of Pancreatic Islet Isolation Core of Boston Area Diabetes Endocrinology Research Center (BADRC) is to provide high quality islets to the local diabetes research community. The laboratory is physically located at The Massachusetts General Hospital (MGH). It is a specialized services facility (per OMB Circular A-21) and the only lab in New England produces human pancreatic islets under current Good Manufacture Procedure (cGMP) standards. The manufacturing facility supports the MGH clinic islet transplant program, a member of the Consortium of Islet Transplantation (CIT) which is working to advance clinical islet transplantation from an experimental trial to a standard care procedure.

Since its inception in 2008, the MGH Pancreatic Islet Isolation Laboratory has processed more than 160 human pancreata the majority of which generated islets that were distributed to investigators across the US for use in basic research. In 2011, we expanded our program to provide autologous human islet isolation to patients undergoing total pancreatectomy for chronic pancreatitis that has not responded to conventional intervention. This processing service has been offered to outside institutions and to date, approximately 30 patients from Mass General, Brigham and Women’s Hospital and Dartmouth-Hitchcock Medical Center of Dartmouth Medical School have benefited from this innovative technology.

We have conducted a variety of experimental studies on pancreatic islet transplantation in primate, porcine and rodent models. We also collaborate with researchers nationally to provide high quality nonhuman primate (NHP) islets for research. Our extensive experience in areas such as tolerance induction, encapsulation of islets, large/small animal surgery, islet isolation, and animal care allow us to be an ideal resource center for related studies.

Partners Research Computing Core


The Partners Research Computing Core was created by Enterprise Research Infrastructure & Services (ERIS) to offer dedicated services, consultation, and support within the teaching hospitals. Please check the service catalog as new services are added, or contact us if you need a consultation. Initial discussion is at no charge.

Partners Tissue and Blood Repository (BWH)


This Tissue and Blood Repository Core provides specimen acquisition, processing and storage services, and access to archived frozen tissue specimens to the BWH/MGH/DFCI research community.

Pathology Specimen Locator (DF/HCC)


The Pathology Specimen Locator Core was established in 2008 and offers services that enable investigators with appropriate IRB approval to access tissues with fewer barriers. This is achieved through a web-based, integrated network of distributed searchable databases that contain de-identified, coded, pathologic information on post-diagnostic, excess paraffin-embedded tissues human materials.

Access to annotated human tissues with cancer is critical for translational research, which provides an increasingly important bridge between basic scientific research and clinical medicine. In a complex multi-institutional environment like the DF/HCC, the Core streamlines the process of tissue acquisition, provides a single point of entry for tissue-related services, and connects the necessary pathology expertise with bench scientists. The Core allows more investigators to gain prompt access to tissues, while ensuring that the tissues used in research have the pathology validation, a feature that is critical for any study involving the use of tissues.

Physiologic Research (BWH)


Our research group specializes in research related to the study of kidney function in various populations.

Assays for Study of Kidney Function
Our lab offers two renal function assays for measurement of renal plasma flow (RPF) and glomerular filtration rate (GFR) to analyze human kidney function.
• The RPF assay measures the clearance of para-aminohippurate (PAH)
• The GFR assay measures clearance of Inulin
• Sample pickup and storage is also available for study groups

Other Clinical Specialties
Our lab conducts clinical research with a specific focus on diabetes, hypertension, nephrology and the renin-angiotensin system (RAS) and cardiovascular disease. The assay services would be helpful to clinical researchers involved in these fields.

PAH plasma clearance provides accurate measure of RPF and requires placement of two IV’s in the patients arms—one in each arm. In one of these IV’s, PAH is infused at a rate dependent on the research participants current weight. The infusion continues for a period of time as specified in a study protocol. At certain specified time points, blood samples are obtained from the second IV. These blood samples are processed and the remaining sample is the plasma. This is retrieved by our lab and stored at 20°C until it is assayed. This process is the same for the Inulin assay for measurement of GFR. To measure Inulin clearance, plasma samples have to be hydrolyzed to a dialyzable product in a dilute hydrochloric acid solution without precipitating plasma proteins. Inulin clearance has become the standard method in determining GFR.

Certain study groups may wish to measure both RPF and GFR. In this circumstance, both PAH and Inulin can be infused together.

Research Experience
We have extensive experience in clinical research study design and sponsor funded research. If you have any questions about these topics please contact the personnel listed below.

Preclinical Discovery Core (BWH)


The Preclinical Discovery Core (PDC) provides the infrastructural and consultative support for non-invasive measurements of alterations in body composition, muscle performance, physical function and metabolic performance to facilitate longitudinal studies of FPTs during aging and metabolic stress. The PDC is also continuing its mission to spearhead innovation- development of novel 7Tesla MRI techniques to provide mechanistic insights into FPT interventions.

Preclinical MRI Core Facility (BIDMC)


The Preclinical MRI Core Facility at Beth Israel Lahey Health/Beth Israel Deaconess Medical Center offers instrumentation and expertise for a broad range of magnetic resonance imaging and spectroscopy applications for small animals, excised tissue and cell culture studies. We provide fee for service within BIDMC and to outside investigators.

Proteomics Center at Boston Children's Hospital


The Proteomics Center at Children's Hospital Boston offers the most up-to-date proteomics equipment currently available. This includes the latest equipment for protein separation and several state-of-the-art mass spectrometers, which detect and quantify proteins in a sample and measure them to determine their structure and characteristics.

Psychiatric and Neurodevelopmental Genetics Unit Core Lab (MGH)


The PNGU Core Lab provides a variety of services intended to facilitate the identification and characterization of the genetic basis of psychiatric, behavioral, and neurodevelopment disorders as well as other complex disorders.

Services include assistance with study design and start-up, custom genotyping (SNP, other), DNA extraction and quantification, and sample preparation, tracking, and storage.

The PNGU Core Lab is open to both internal (MGH) and external investigators.

Radiopharmaceutical Chemistry Laboratory (BCH)


The radiopharmaceutical chemistry research program occupies two research laboratories in the Enders research building at Children's: a radiopharmaceutical chemistry laboratory and a "hot" laboratory. A separate cell-culture laboratory is also available.

The radiopharmaceutical chemistry laboratory contains four fume hoods, approximately 50 linear feet of bench space, and is set up to accommodate three postdoctoral researchers.

Ragon Institute Biostatistics Core


The Biostatistics Core serves the needs of the HIV/AIDS researchers within the Ragon Institute and its affiliates. In particular, members of the Biostatistics Core provide expertise in the planning, conduct and analysis of research with the goal of enhancing the scientific quality of HIV-related research at the institute.

The primary objective of the core is to ensure that studies are well designed, correctly analyzed, clearly presented, and correctly interpreted.

Ragon Institute Imaging Core, Flow Cytometry (MGH)


The mission of the Ragon Institute Imaging Core is to bring the latest imaging modalities to bear on fundamental molecular and cell biological questions pertaining to infectious diseases. As an MGH core, it also serves the greater MGH community in all aspects of microscopy, flow cytometry and cell sorting. The Flow Cytometry division of the Ragon Institute Imaging Core is located on the 9th floor of 400 Technology Square in Cambridge. The core offers training, assistance and access to flow cytometers and other instrumentation. Consultation is provided on experimental design. Our high speed cell sorter is situated in a BL2+ facility, permitting sorting of fixed or live samples with up to BL2+ level of biosafety.

Since the Ragon Institute is also a collaboration between MGH, Harvard, and MIT, so too does the facility welcome members of the MIT and Harvard communities.

Ragon Institute Imaging Core, Microscopy (MGH)


The mission of Ragon Institute Imaging Core, Microscopy Division is to bring the latest imaging modalities and technology to bear on fundamental molecular and cell biological questions pertaining to infectious diseases. As an MGH Core Facility, the Ragon Institute Imaging Core also serves the MGH greater MGH community. Since the Ragon Institute is also a collaboration between MGH, Harvard, and MIT, so too does the facility welcome members of the MIT and Harvard communities as we are now located in Cambridge at MIT.

The facility encompasses five imaging systems, including a Zeiss LSM510 laser scanning confocal microscope and a fully automated Zeiss Axio Observer microscope, both housed in BL2+ compliant facilities. These imaging systems are therefore fully equipped for both fixed and live cell imaging. In addition, the facility has two slide scanning systems (MIRAX MIDI and TissueFAXS) for high speed automated imaging and cellular screening of tissue sections and cultured cells on glass slides. In the Flow Cytometry section of the Imaging Core, we also have an ImageStream X Mark II by Amnis.

The core also serves as a resource for addressing a variety of imaging needs including consultation on a topics related to imaging applications, experimental design, and sample preparation.

Research Computing Core (FAS)


Research Computing (RC) facilitates the advancement of complex research by providing leading edge computing services across the Faculty of Arts & Sciences (FAS). RC staff maintain expertise in constantly changing computing technologies, while 'speaking the language' of the FAS researchers, to help them use computing more effectively.

Research Imaging Core of Boston Children’s Hospital


Research Imaging is a key component of Boston Children’s Hospital’s ongoing endeavors in advancements of pediatric medicine, and is supported by the Department of Radiology. As a leading innovator in pediatric research imaging, we are at the forefront of developing treatments and cures for diseases such as epilepsy and autism. Our mission is to assist investigators with achieving the best imaging research outcomes possible, while also assuring compliance with institutional policies.

Rodent Histopathology Core Facility (DF/HCC)


The Rodent Histopathology Core was founded in 1999 as one of the pathology cores within the Dana-Farber/Harvard Cancer Center. The Core was established to provide high quality professional, technical, and educational pathology services. The ultimate goal of the facility has been to support investigator research that leads to the identification of pathologic processes in mice and can be directly translatable to human disease.

The core provides an essential and unique service to the many Center members and labs invested in mouse research. While many commercial and academic histology services are available, no other service is available that offers comparable high quality service with rapid turn around time and highly experienced professional supervision. The educational mission of the Core also adds an important dimension.

SBGrid Core (HMS)


The SBGrid Core team provides research computing sysadmin support to structural biology laboratories in the Boston area.

Seahorse Core Facility (BWH)


The Seahorse Core supports the use of an XFe24 Extracellular Flux Analyzer from Seahorse Biosciences to perform sensitive measurements of oxygen consumption rate and extracellular acidification rate in cultured cells, tissues, or model organisms in a 24-well format.

Shannon McCormack Advanced Molecular Diagnostics Laboratory (DFCI)


The Molecular Diagnostics Laboratory provides such research services as microRNA expression profiling, human cell line identity verification, mutation detection for clinical research studies, and specimen processing for clinical research studies to investigators at the Dana Farber Cancer Institute, as well as to investigators at other institutions. Consultation on experimental design and assistance with data analysis are also available.

Sleep & EEG Core (BWH)


The Sleep & EEG Core within the Division of Sleep Medicine (DSM) provides an integrated infrastructure and knowledge base in support of research projects that use polysomnography (PSG), quantitative EEG analysis and related methodologies. The Core consists of a team of specialists lead by the Core director and a chief PSG technologist.

The Core provides support and services in different areas:
1) It provides basic training and certification in PSG and EEG instrumentation to technicians and investigators, particularly those conducting studies at the Center for Clinical Investigation (CCI) at Brigham and Women’s Hospital.
2) It acts as liaison between DSM investigators and CCI technical staff, and implements and monitors quality assurance measures.
3) It carries out standard vigilance state scoring of PSG recordings and different types of waking EEG and electrooculogram analyses.
4) It carries out spectral analysis of sleep and waking EEG.
5) It evaluates, acquires, and maintains PSG and EEG equipment used by investigators of the CCI.
6) It carries out PSG procedures such as sleep screens and multiple sleep latency tests.
7) It assists investigators in the analysis and interpretation of sleep and EEG data.

Over the years, the Sleep & EEG Core has been a central part of many projects funded by NIH, the Air Force Office of Scientific Research (AFOSR), and the National Space Biomedical Research Institute (NSBRI) that had a main focus on the physiology of human sleep-wake regulation. Scientifically, the Core has contributed by providing investigators with important quantitative measures of homeostatic and circadian components of the human sleep-wake regulatory system.

Small Animal Imaging Core Laboratory (BCH)


The Small Animal Imaging Lab (SAIL) provides a multi-modality imaging program as a core resource to investigators. The availability of ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT), and positron emission tomography (PET) allows for both anatomical and functional imaging.

Small Molecule Mass Spectrometry Facility (FAS)


The Small Molecule Mass Spectrometry Facility at the FAS Center for Systems Biology offers support for the analysis of a wide variety of analytes using mass spectrometry based techniques. We are located in the second basement (B2) level of the Northwest Laboratory building at 52 Oxford Street, Cambridge, MA 02138. We provide services for molecular formula confirmation (accurate mass measurement), structural elucidation (MS/MS) and quantitation of small molecules. In addition, we can assist you in the mass analysis of a wide variety of non-proteomics samples including metabolites, medium sized proteins and oligonucleotides. Please contact us and tell us about your samples prior to submission or use of our Open Access laboratory.

Specialized Histopathology Services Core (DF/HCC)


Tissue analysis is critical to validation and evaluation of animal models of human cancer, and human cancer tissues serve as the "operating system" for translational research. The facility supports a wide spectrum of cancer-relevant research, from basic studies on pathogenic mechanisms in cancer to translational research focused on the development of new tests for biomarkers that stratify patients and direct therapy.

The Specialized Histopathology (SHP) Core has two performance sites: Longwood, Directed by Jon Aster and based at the Brigham and Women’s Hospital and MGH, Directed by Anat Stemmer-Rachamimov and based at Massachusetts General Hospital East in Charlestown.

The SHP Core provides high-quality, timely, state-of-the-art technical and professional pathology services to investigators working in a variety of experimental organisms, including rodents, fish, and monkeys, as well as with human tissues. The Core performs routine histology and special histochemical stains, and also assists in experimental design and the development, application, and interpretation of biomarker tests and their results. Specific services include immunohistochemistry, immunofluorescent staining, and in situ hybridization.

Performance Sites:
Specialized Histopathology Services- Longwood Core
Brigham and Women's Hospital
75 Frances Street, Thorn 604, 603b
Boston, MA 02115

Specialized Histopathology Services- MGH Core
Massachusetts General Hospital-East
13th Street, Building 149
Charlestown Navy Yard 6, Room 6122
Boston, MA 02129

Surgical Planning Laboratory (BWH)


The Surgical Planning Laboratory is advancing the future of health care by bringing the power of computation and imaging to new areas of medicine. The lab collaborates with groups within Brigham and Women's Hospital, with other researchers at the Harvard Medical School, with local universities such as Harvard and MIT, and with gifted clinicians, researchers, and engineers throughout the world. The Core Mission of the SPL is the extraction of medically relevant information from diagnostic imaging data.

This laboratory also has a large publications database.

Survey and Data Management Core (DF/HCC)


The Survey and Data Management Core (SDMC) provides efficient, high-quality survey data collection and management services and consultation to support the research needs of investigators and staff throughout the Harvard Medical research community. The Core, housed within the Center for Population Sciences at the Dana-Farber Cancer Institute, is dedicated to rigorous evidence-based quantitative, qualitative and mixed methods data collection and management.

Systems Biology Quad Machine Shop (HMS)


We have many years of experience designing and manufacturing custom tools for medical research. This has allowed us to compile a large collection of different solutions to a wide range of problems. We work on a daily basis with researchers working in these areas of medical science:

- Cell Biology
- Genetics
- Anesthesiology Research
- Surgical Research
- Pathology Research
- Respiratory Biology
- Environmental Sciences

Taplin Mass Spectrometry Core Facility (HMS)


The Taplin Biological Mass Spectrometry Facility opened in February 2001 as a core facility for the analysis of proteins and peptides by mass spectrometry. The facility is focused on serving the needs of investigators at Harvard Medical School (HMS) and all the Harvard affiliated Institutions.

Tissue Microarray and Imaging Core Facility (DF/HCC)


The Tissue Microarray and Imaging Core is dedicated to the construction and evaluation of high-quality tissue microarrays for cancer research. Tissue microarrays enable large-scale, high-throughput in-situ analysis of gene and protein expression. By providing access to this resource, as well as enabling computer-based image analysis, the Core facilitates translational research and the discovery and validation of novel potential drug targets.

Trace Metals Laboratory (HSPH)


The transport, fate, exposure, and toxic effects of heavy metals is a primary focus of research at the Center. The Metals Service provides metals analytical capabilities to biomedical and non-biomedical researchers and serves as a source for study design consultation and sample QA/QC requirements.

The Trace Metals Laboratory operates as a modified fee-for-service laboratory. Researchers have the option of having the samples run by the Service staff, or of receiving instruction (for themselves or a doctoral or post doctoral trainee) on how to operate the analytical equipment and analyze their own samples. Both options have associated fees and, as with other services, facility access funds can be requested internal or external services when individual grant support is not yet available.

TransLab (BCH)


The TransLab is an innovative clinical and translational platform that bridges scientific discovery and clinical practice. Our mission is to:

• Provide integrative laboratory services to support clinical trials
• Accelerate the development of novel cell and gene-based therapies

An experienced and qualified professional staff performs the work in a quality-controlled environment. Importantly, the TransLab leverages existing core facilities when needed: flow cores (cell sorting), microscopy core (advanced imaging), genomics cores (sequencing and other assay), biorepository core (long term storage).

The core is supported in part by Boston Children’s Hospital and Dana-Farber Cancer institute. We serve all academic institutions (locally and nationally) as well as biotech and pharmaceutical companies.

Transgenic Core Facility (BIDMC)


The Beth Israel Deaconess Transgenic Core Facility opened in October of 1991.The Transgenic Core is a state-of-art facility that produces genetically altered animals.

Transgenic Core Laboratory (BCH)


The Transgenic Core centralizes the production of genetically altered mice for MRRC investigators in a cost-effective and efficient manner. The Core also provides expert assistance in the additional areas required for generating genetically altered mice, including transgene and targeting construct production, and transgenic mouse colony management. Core personnel are available to train investigators in all of the techniques required for the generation of genetically modified mice.

Transgenic Mouse Core (DF/HCC)


The Transgenic Mouse Core at Harvard Medical School was established in 1992 operating at the BWH, and is now located at Harvard Medical School and the newest of the DF/HCC cores as of March 2018. The Transgenic Mouse Core provides services for the generation of transgenic and knockout mice using state-of-the-art facilities and equipment.

Dr. Lina Du, formerly a plastic surgeon in Beijing and an expert in microvascular surgery, performs both blastocyst and pronuclear injections. She has over 20 years of experience in embryo manipulation and the generation transgenic mice.

The Transgenic Mouse Core has all of the equipment necessary for generation of transgenic mice including a Nikon Diaphot microscope equipped with Nomarski Optics and Narishige micromanipulators for microinjections, Nikon surgical microscopes for egg isolation ad transfer, a sutter needle puller and a de Fonbrune microforge. The facility maintains mice necessary for egg donors, egg recipients, and vasectomized males. This is a non-profit facility and charges are based upon anticipated mouse costs, maintenance of mice and equipment, purchase of necessary surgical supplies and chemicals, and personnel costs.

ES cell culture services have been offered for 15 years. Our staff carries out electroporation of targeting vectors into ES cells and provides investigators with DNA to identify ES cells carrying the desired recombination events. Staff then expand the appropriate ES cells for microinjection into blastocysts by the Transgenic Mouse Core.

In recent years, the core has expanded its list of services to include CRISPR injections and cryopreservation.

Translational Imaging Laboratory (McLean)


The McLean Hospital Translational Imaging Laboratory aims to provide cutting edge magnetic resonance imaging, functional imaging, chemical imaging (spectroscopy), and multimodal imaging services to the Harvard Catalyst Community. We have 3 magnetic resonance (MR) scanners, an ultra high magnetic field (9.4 Tesla) dedicated animal scanner and 3.0 and 4.0 Tesla large bore human systems available for large animal scans. Our scanners are capable of conducting scans in animals ranging in size from mice to large dogs, and we have experience imaging mice, rats, rabbits, nonhuman primates, and several canine species. All 3 scanners have dedicated animal prep areas. We offer high level biophysics, engineering, and data analytic expertise, along with veterinary technologist anesthesia support.

Translational MRI Research Core


The Translational MRI Core of the BIDMC Department of Radiology provides state-of-the-art MRI capabilities for imaging human subjects and potentially large animals as part of research studies. The facility operates a research dedicated 3 Tesla system and can provide access to a 1.5 Tesla system. In addition to commercial tools for clinical imaging, customized software and protocols for applications including functional and structural brain imaging, abdominal perfusion and diffusion, muscle functional imaging and spectroscopy are available to users. Additional customization of applications either by the Core staff or in collaboration with the Division of MRI Research is encouraged.

Tumor Imaging Metrics Core Facility (DF/HCC)


The Tumor Imaging Metrics Core (TIMC), co-Directed by Annick D. Van den Abbeele, MD (DFCI) and Gordon J. Harris, PhD (MGH), is a shared resource that was founded in 2004 to provide standardized, longitudinal tumor metrics for patients enrolled in oncologic clinical trials across the five Harvard teaching hospitals of the DF/HCC. The ordering, communication, workflow, results reporting, electronic signatures, audit trails, criteria conformance, and chargeback billing are all managed through a web-based informatics platform, Precision Imaging Metrics, developed by TIMC, which is currently in use at eight NCI-designated Cancer Centers around the country. Clinical trials imaging assessment results are provided in time for review at the point of care in as little as one hour after completion of scanning. TIMC currently manages over 1,200 active clinical trials and performs over 15,000 image assessments per year for Partners and DF/HCC investigators. The mission of the Tumor Imaging Metrics Core (TIMC) is to provide standardized, consistent, longitudinal radiological measurements to evaluate therapeutic response for DF/HCC clinical trials.

The TIMC -

* Makes reliable, quantitative, longitudinal measurements (such as RECIST, Lugano, irRC, RANO,
standardized uptake value SUV etc.) of lesions from serial MRI, CT, PET, and PET/CT scan images
* Presents results of analyses on a password-protected secure web-based report
* Provides an independent service, with verifiable measurement of treatment response for patients enrolled in cancer center trials
* Serves as a centralized, computerized resource to facilitate efficient internal or external auditing

Ultrasound (BCH)


Ultrasound, which is also known as sonography, is a painless, non-invasive imaging technique that lets us look inside your child's body without the use of radiation. It uses high-frequency sound waves to create pictures of organs, bones, tissues and blood vessels.

Vector Development and Production Core Facility (MGH)


The Vector Development and Production Core provides viral vectors with custom-designed promoters and reporter genes and capacity for gene regulation.

X-ray Crystallography Core (BIDMC)


The X-ray Crystallography Facility located at 99 Brookline Ave. (Research North) was recently established as a core to serve the needs of investigators in the BIDMC and Harvard Medical School community interested in using structural biology as a tool in their research.

eData Collection Core (BIDMC)


The Data Collection Core will provide expert services including: study forms design and implementation; training in all aspects of using TELEform software; database construction and exporting / preparing data for statistical applications such as SAS and SPSS; and technical assistance with scanners and computers running electronic form capture process.", "The Research Electronic Data Collection Core can help you capture research data by supporting all aspects of data acquisition, storage and retrieval. The core is designed to significantly improve the efficiency, cost structure and overall quality of research data collection.

Found 224   core laboratories .

This institution proudly participates in the eagle-i Network. Use the search bar above to search more than 90,000 biomedical research resources currently listed in eagle-i from more than 28 institutions. Not sure what you're looking for? Choose "Browse" at the top of the page to see organisms, instruments, reagents, services and more.

To learn more about the eagle-i Network, resources and institutions, please visit www.eagle-i.net.

Copyright © 2016 by the President and Fellows of Harvard College
The eagle-i Consortium is supported by NIH Grant #5U24RR029825-02 / Copyright 2016